Cargando…
Rapid Identification of Different Grades of Huangshan Maofeng Tea Using Ultraviolet Spectrum and Color Difference
Tea is an important beverage in humans’ daily lives. For a long time, tea grade identification relied on sensory evaluation, which requires professional knowledge, so is difficult and troublesome for laypersons. Tea chemical component detection usually involves a series of procedures and multiple st...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587389/ https://www.ncbi.nlm.nih.gov/pubmed/33066248 http://dx.doi.org/10.3390/molecules25204665 |
_version_ | 1783600166944636928 |
---|---|
author | Huang, Danyi Qiu, Qinli Wang, Yinmao Wang, Yu Lu, Yating Fan, Dongmei Wang, Xiaochang |
author_facet | Huang, Danyi Qiu, Qinli Wang, Yinmao Wang, Yu Lu, Yating Fan, Dongmei Wang, Xiaochang |
author_sort | Huang, Danyi |
collection | PubMed |
description | Tea is an important beverage in humans’ daily lives. For a long time, tea grade identification relied on sensory evaluation, which requires professional knowledge, so is difficult and troublesome for laypersons. Tea chemical component detection usually involves a series of procedures and multiple steps to obtain the final results. As such, a simple, rapid, and reliable method to judge the quality of tea is needed. Here, we propose a quick method that combines ultraviolet (UV) spectra and color difference to classify tea. The operations are simple and do not involve complex pretreatment. Each method requires only a few seconds for sample detection. In this study, famous Chinese green tea, Huangshan Maofeng, was selected. The traditional detection results of tea chemical components could not be used to directly determine tea grade. Then, digital instrument methods, UV spectrometry and colorimetry, were applied. The principal component analysis (PCA) plots of the single and combined signals of these two instruments showed that samples could be arranged according to grade. The combined signal PCA plot performed better with the sample grade descending in clockwise order. For grade prediction, the random forest (RF) model produced a better effect than the support vector machine (SVM) and the SVM + RF model. In the RF model, the training and testing accuracies of the combined signal were all 1. The grades of all samples were correctly predicted. From the above, the UV spectrum combined with color difference can be used to quickly and accurately classify the grade of Huangshan Maofeng tea. This method considerably increases the convenience of tea grade identification. |
format | Online Article Text |
id | pubmed-7587389 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75873892020-10-29 Rapid Identification of Different Grades of Huangshan Maofeng Tea Using Ultraviolet Spectrum and Color Difference Huang, Danyi Qiu, Qinli Wang, Yinmao Wang, Yu Lu, Yating Fan, Dongmei Wang, Xiaochang Molecules Article Tea is an important beverage in humans’ daily lives. For a long time, tea grade identification relied on sensory evaluation, which requires professional knowledge, so is difficult and troublesome for laypersons. Tea chemical component detection usually involves a series of procedures and multiple steps to obtain the final results. As such, a simple, rapid, and reliable method to judge the quality of tea is needed. Here, we propose a quick method that combines ultraviolet (UV) spectra and color difference to classify tea. The operations are simple and do not involve complex pretreatment. Each method requires only a few seconds for sample detection. In this study, famous Chinese green tea, Huangshan Maofeng, was selected. The traditional detection results of tea chemical components could not be used to directly determine tea grade. Then, digital instrument methods, UV spectrometry and colorimetry, were applied. The principal component analysis (PCA) plots of the single and combined signals of these two instruments showed that samples could be arranged according to grade. The combined signal PCA plot performed better with the sample grade descending in clockwise order. For grade prediction, the random forest (RF) model produced a better effect than the support vector machine (SVM) and the SVM + RF model. In the RF model, the training and testing accuracies of the combined signal were all 1. The grades of all samples were correctly predicted. From the above, the UV spectrum combined with color difference can be used to quickly and accurately classify the grade of Huangshan Maofeng tea. This method considerably increases the convenience of tea grade identification. MDPI 2020-10-13 /pmc/articles/PMC7587389/ /pubmed/33066248 http://dx.doi.org/10.3390/molecules25204665 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huang, Danyi Qiu, Qinli Wang, Yinmao Wang, Yu Lu, Yating Fan, Dongmei Wang, Xiaochang Rapid Identification of Different Grades of Huangshan Maofeng Tea Using Ultraviolet Spectrum and Color Difference |
title | Rapid Identification of Different Grades of Huangshan Maofeng Tea Using Ultraviolet Spectrum and Color Difference |
title_full | Rapid Identification of Different Grades of Huangshan Maofeng Tea Using Ultraviolet Spectrum and Color Difference |
title_fullStr | Rapid Identification of Different Grades of Huangshan Maofeng Tea Using Ultraviolet Spectrum and Color Difference |
title_full_unstemmed | Rapid Identification of Different Grades of Huangshan Maofeng Tea Using Ultraviolet Spectrum and Color Difference |
title_short | Rapid Identification of Different Grades of Huangshan Maofeng Tea Using Ultraviolet Spectrum and Color Difference |
title_sort | rapid identification of different grades of huangshan maofeng tea using ultraviolet spectrum and color difference |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587389/ https://www.ncbi.nlm.nih.gov/pubmed/33066248 http://dx.doi.org/10.3390/molecules25204665 |
work_keys_str_mv | AT huangdanyi rapididentificationofdifferentgradesofhuangshanmaofengteausingultravioletspectrumandcolordifference AT qiuqinli rapididentificationofdifferentgradesofhuangshanmaofengteausingultravioletspectrumandcolordifference AT wangyinmao rapididentificationofdifferentgradesofhuangshanmaofengteausingultravioletspectrumandcolordifference AT wangyu rapididentificationofdifferentgradesofhuangshanmaofengteausingultravioletspectrumandcolordifference AT luyating rapididentificationofdifferentgradesofhuangshanmaofengteausingultravioletspectrumandcolordifference AT fandongmei rapididentificationofdifferentgradesofhuangshanmaofengteausingultravioletspectrumandcolordifference AT wangxiaochang rapididentificationofdifferentgradesofhuangshanmaofengteausingultravioletspectrumandcolordifference |