Cargando…

Structural Study on Fat Crystallization Process Heterogeneously Induced by Graphite Surfaces

Some inorganic and organic crystals have been recently found to promote fat crystallization in thermodynamically stable polymorphs, though they lack long hydrocarbon chains. The novel promoters are talc, carbon nanotube, graphite, theobromine, ellagic acid dihydrate, and terephthalic acid, among whi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaneko, Fumitoshi, Yamamoto, Yoshinori, Yoshikawa, Shinichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587562/
https://www.ncbi.nlm.nih.gov/pubmed/33086514
http://dx.doi.org/10.3390/molecules25204786
Descripción
Sumario:Some inorganic and organic crystals have been recently found to promote fat crystallization in thermodynamically stable polymorphs, though they lack long hydrocarbon chains. The novel promoters are talc, carbon nanotube, graphite, theobromine, ellagic acid dihydrate, and terephthalic acid, among which graphite surpasses the others in the promotion effect. To elucidate the mechanism, we investigated the influence of graphite surfaces on the crystallization manner of trilaurin in terms of crystal morphology, molecular orientation, and crystallographic features. Polarized optical microscopy, cryo-scanning electron microscopy, synchrotron X-ray diffractometry, and polarized Fourier-transform infrared spectroscopy combined with the attenuated total reflection sampling method were employed for the analyses. All the results suggested that the carbon hexagonal network plane of graphite surfaces have a high potential to facilitate the clustering of fat molecules against high thermal fluctuations in fat melt, the fat molecules form a layer structure parallel to the graphite surface, and the clusters tend to grow into thin plate crystals of the β phase at the temperatures corresponding to low supercooling. The β′ phase also has a larger chance to grow on the graphite surface as supercooling increases.