Cargando…

Highly Efficient Extraction Procedures Based on Natural Deep Eutectic Solvents or Ionic Liquids for Determination of 20-Hydroxyecdysone in Spinach

A novel, efficient extraction procedure based on natural deep eutectic solvents (NADES) and ionic liquids (ILs) for determination of 20-hydroxyecdysone (20-E) in spinach has been developed. NADES, the first green extraction agent, with different hydrogen bond donors and acceptors are screened in ord...

Descripción completa

Detalles Bibliográficos
Autores principales: Bajkacz, Sylwia, Rusin, Kornelia, Wolny, Anna, Adamek, Jakub, Erfurt, Karol, Chrobok, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587567/
https://www.ncbi.nlm.nih.gov/pubmed/33076445
http://dx.doi.org/10.3390/molecules25204736
Descripción
Sumario:A novel, efficient extraction procedure based on natural deep eutectic solvents (NADES) and ionic liquids (ILs) for determination of 20-hydroxyecdysone (20-E) in spinach has been developed. NADES, the first green extraction agent, with different hydrogen bond donors and acceptors are screened in order to determine extraction efficiencies. NADES consisting of lactic acid and levulinic acid at a molar ratio of 1:1 exhibits the highest yields. ILs, the second green extraction agent, with various cations and anions are also investigated, where [TEA] [OAc]·AcOH, χ(AcOH) = 0.75 displays the highest recovery. Moreover, NADES-SLE and IL-SLE (SLE, solid-liquid extraction) parameters are investigated. Using the obtained optimized method, the recoveries of the target compound in spinach are above 93% and 88% for NADES-SLE and IL-SLE procedure, respectively. The methods display good linearity within the range of 0.5–30 μg/g and LODs of 0.17 µg/g. The proposed NADES-SLE-UHPLC-UV and IL-SLE-UHPLC-UV procedures can be applied to the analysis of 20-E in real spinach samples, making it a potentially promising technique for food matrix. The main advantage of this study is the superior efficiency of the new, green extraction solvents, which results in a significant reduction of extraction time and solvents as compared to those in the literature.