Cargando…
Flame Retardancy and Thermal Behavior of an Unsaturated Polyester Modified with Kaolinite–Urea Intercalation Complexes
Organic modified kaolinite-urea intercalation complex (KUIC) was prepared using dimethyl sulfoxide (DMSO) as the precursor of kaolinite intercalation. Its structure was characterized by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Subsequently, as a synergistic agent, KUIC was comb...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587600/ https://www.ncbi.nlm.nih.gov/pubmed/33076390 http://dx.doi.org/10.3390/molecules25204731 |
Sumario: | Organic modified kaolinite-urea intercalation complex (KUIC) was prepared using dimethyl sulfoxide (DMSO) as the precursor of kaolinite intercalation. Its structure was characterized by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Subsequently, as a synergistic agent, KUIC was combined with flame retardant ammonium polyphosphate (APP) to improve the flame retardant and smoke suppression performance of unsaturated polyester (UP) resin. A cone calorimeter (CONE) was used to study its flame retardancy and smoke suppression, and a scanning electron microscope (SEM) and thermogravimetry (TG) were used to study the micro morphology of the char and flame retardant mechanism. The results show that 12 phr of APP and 3 phr of KUIC were doped into UP to obtain a 28.0% limiting oxygen index (LOI) value. Compared with UP, the heat release rate and smoke production of UP/APP/KUIC composites were greatly decreased. Meanwhile, KUIC indeed enhanced the mechanical properties of UP. |
---|