Cargando…

Chitosan oligosaccharide supplementation alleviates stress stimulated by in-feed dexamethasone in broiler chickens

This experiment was conducted to investigate the effect of dietary chitosan oligosaccharide (COS) on growth performance, nutrient digestibility, jejunal morphology, gene expression, and plasma antioxidant enzymes in male broiler chickens under experimentally induced stress via in-feed dexamethasone...

Descripción completa

Detalles Bibliográficos
Autores principales: Osho, S.O., Adeola, O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587614/
https://www.ncbi.nlm.nih.gov/pubmed/32241491
http://dx.doi.org/10.1016/j.psj.2019.11.047
Descripción
Sumario:This experiment was conducted to investigate the effect of dietary chitosan oligosaccharide (COS) on growth performance, nutrient digestibility, jejunal morphology, gene expression, and plasma antioxidant enzymes in male broiler chickens under experimentally induced stress via in-feed dexamethasone (DEX). On day 3 after hatching, male broiler chicks were assigned to 2 diets supplemented with COS at 0 or 1 g/kg in a randomized complete block design and fed to day 27 after hatching. Birds were pooled within each diet (0 or 1 g/kg COS) to equalize the average BW and fed 2 diets supplemented with 0 or 1 g/kg DEX, within each dietary COS, from day 20 to 27 after hatching. This resulted in a 2 × 2 factorial arrangement of treatments with 2 levels each of COS and DEX, 8 replicate cages of 7 birds per cage. On day 27 after hatching, birds were weighed and euthanized, and samples were collected. Dietary COS decreased (P < 0.05) DEX-induced effects (interaction; P < 0.05) on BW, BW gain, and gain:feed. Dietary COS supplementation attenuated the DEX effects (interaction; P < 0.05) on villus height, crypt depth, villus height to crypt depth ratio, and ileal digestibility of dry matter and energy. The DEX-induced effect of relative mRNA expression of jejunal mucosa IL-6, IL-10, and claudin-1 was reduced by dietary COS supplementation (interaction; P < 0.05). Responses (interaction; P < 0.05) in the activity of plasma superoxide dismutase, catalase, and glutathione peroxidase to COS and DEX were similar to those observed with the relative mRNA expression. Chitosan oligosaccharide supplementation increased (P < 0.05) the mRNA expression of IL-8 and occludin. In conclusion, dietary COS decreased the DEX-induced effect by improving growth performance, nutrient digestibility, jejunal morphology, gene expression, and plasma antioxidant enzymes in broiler chickens. This implies that dietary COS may be useful for ameliorating the negative effect of stress on gut health in broiler chickens.