Cargando…

Modulation of Cation Diffusion by Reversible Supramolecular Assemblies in Ionic Liquid-Based Nanocomposites

[Image: see text] Ionic liquid (IL) properties, such as high ionic conductivity under ambient conditions combined with nontoxicity and nonflammability, make them important materials for future technologies. Despite high ion conductivity desired for battery applications, cation transport numbers in I...

Descripción completa

Detalles Bibliográficos
Autores principales: Bocharova, Vera, Jayakody, Nishani, Yang, Jie, Sacci, Robert L., Yang, Wei, Cheng, Shiwang, Doughty, Benjamin, Greenbaum, Steven, Jeong, Seung Pyo, Popov, Ivan, Zhao, Sheng, Gainaru, Catalin, Wojnarowska, Zaneta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588017/
https://www.ncbi.nlm.nih.gov/pubmed/32567831
http://dx.doi.org/10.1021/acsami.0c08323
Descripción
Sumario:[Image: see text] Ionic liquid (IL) properties, such as high ionic conductivity under ambient conditions combined with nontoxicity and nonflammability, make them important materials for future technologies. Despite high ion conductivity desired for battery applications, cation transport numbers in ILs are not sufficient enough to attain high power density batteries. Thus, developing novel approaches directed toward improvement of cation transport properties is required for the application of ILs in energy-storing devices. In this effort, we used various experimental techniques to demonstrate that the strategy of mixing ILs with ultrasmall (1.8 nm) nanoparticles (NPs) resulted in melt-processable composites with improved transport numbers for cations at room temperature. This significant enhancement in the transport number was attributed to the specific chemistry of NPs exhibiting a weaker cation and stronger anion coordination at ambient temperature. At high temperature, significantly weakened NP–anion associations promoted a liquid-like behavior of composites, highlighting the melt-processability of these composites. These results show that designing a reversible dynamic noncovalent NP–anion association controlled by the temperature may constitute an effective strategy to control ion diffusion. Our studies provide fundamental insights into mechanisms driving the charge transport and offer practical guidance for the design of melt-processable composites with an improved cation transport number under ambient conditions.