Cargando…
Modified Interaction-Strength Interpolation Method as an Important Step toward Self-Consistent Calculations
[Image: see text] The modified point charge plus continuum (mPC) model [ L. A. Constantin; Phys. Rev. B2019, 99, 085117] solves the important failures of the original counterpart, namely, the divergences when the reduced gradient of the density is large, such as in the tail of the density and in qua...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588043/ https://www.ncbi.nlm.nih.gov/pubmed/32559078 http://dx.doi.org/10.1021/acs.jctc.0c00328 |
_version_ | 1783600299080941568 |
---|---|
author | Śmiga, Szymon Constantin, Lucian A. |
author_facet | Śmiga, Szymon Constantin, Lucian A. |
author_sort | Śmiga, Szymon |
collection | PubMed |
description | [Image: see text] The modified point charge plus continuum (mPC) model [ L. A. Constantin; Phys. Rev. B2019, 99, 085117] solves the important failures of the original counterpart, namely, the divergences when the reduced gradient of the density is large, such as in the tail of the density and in quasi-dimensional density regimes. The mPC allows us to define a modified interaction-strength interpolation (mISI) method inheriting these good features, which are important steps toward the full self-consistent treatment. Here, we provide an assessment of mISI for molecular systems (i.e., considering thermochemistry properties, correlation energies, vertical ionization potentials, and several noncovalent interactions), harmonium atoms, and functional derivatives in the strong-interaction limit. For all our tests, mISI provides a systematic improvement over the original ISI method. Semilocal approximations of the second-order Görling–Levy (GL2) perturbation theory are also considered in the mISI method, showing considerable worsening of the results. Possible further development of mISI is briefly discussed. |
format | Online Article Text |
id | pubmed-7588043 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75880432020-10-27 Modified Interaction-Strength Interpolation Method as an Important Step toward Self-Consistent Calculations Śmiga, Szymon Constantin, Lucian A. J Chem Theory Comput [Image: see text] The modified point charge plus continuum (mPC) model [ L. A. Constantin; Phys. Rev. B2019, 99, 085117] solves the important failures of the original counterpart, namely, the divergences when the reduced gradient of the density is large, such as in the tail of the density and in quasi-dimensional density regimes. The mPC allows us to define a modified interaction-strength interpolation (mISI) method inheriting these good features, which are important steps toward the full self-consistent treatment. Here, we provide an assessment of mISI for molecular systems (i.e., considering thermochemistry properties, correlation energies, vertical ionization potentials, and several noncovalent interactions), harmonium atoms, and functional derivatives in the strong-interaction limit. For all our tests, mISI provides a systematic improvement over the original ISI method. Semilocal approximations of the second-order Görling–Levy (GL2) perturbation theory are also considered in the mISI method, showing considerable worsening of the results. Possible further development of mISI is briefly discussed. American Chemical Society 2020-06-19 2020-08-11 /pmc/articles/PMC7588043/ /pubmed/32559078 http://dx.doi.org/10.1021/acs.jctc.0c00328 Text en This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Śmiga, Szymon Constantin, Lucian A. Modified Interaction-Strength Interpolation Method as an Important Step toward Self-Consistent Calculations |
title | Modified Interaction-Strength Interpolation Method
as an Important Step toward Self-Consistent Calculations |
title_full | Modified Interaction-Strength Interpolation Method
as an Important Step toward Self-Consistent Calculations |
title_fullStr | Modified Interaction-Strength Interpolation Method
as an Important Step toward Self-Consistent Calculations |
title_full_unstemmed | Modified Interaction-Strength Interpolation Method
as an Important Step toward Self-Consistent Calculations |
title_short | Modified Interaction-Strength Interpolation Method
as an Important Step toward Self-Consistent Calculations |
title_sort | modified interaction-strength interpolation method
as an important step toward self-consistent calculations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588043/ https://www.ncbi.nlm.nih.gov/pubmed/32559078 http://dx.doi.org/10.1021/acs.jctc.0c00328 |
work_keys_str_mv | AT smigaszymon modifiedinteractionstrengthinterpolationmethodasanimportantsteptowardselfconsistentcalculations AT constantinluciana modifiedinteractionstrengthinterpolationmethodasanimportantsteptowardselfconsistentcalculations |