Cargando…
Automated classification of bacterial cell sub-populations with convolutional neural networks
Quantification of phenotypic heterogeneity present amongst bacterial cells can be a challenging task. Conventionally, classification and counting of bacteria sub-populations is achieved with manual microscopy, due to the lack of alternative, high-throughput, autonomous approaches. In this work, we a...
Autores principales: | Tamiev, Denis, Furman, Paige E., Reuel, Nigel F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588061/ https://www.ncbi.nlm.nih.gov/pubmed/33104721 http://dx.doi.org/10.1371/journal.pone.0241200 |
Ejemplares similares
-
Convolution- and Attention-Based Neural Network for Automated Sleep Stage Classification
por: Zhu, Tianqi, et al.
Publicado: (2020) -
Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks
por: Almutairi, Abdullah, et al.
Publicado: (2022) -
Towards Automated Optimization of Residual Convolutional Neural Networks for Electrocardiogram Classification
por: Fki, Zeineb, et al.
Publicado: (2023) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
por: Tang, Yu-Xing, et al.
Publicado: (2020) -
Automated endoscopic detection and classification of colorectal
polyps using convolutional neural networks
por: Ozawa, Tsuyoshi, et al.
Publicado: (2020)