Cargando…

Steered sample algorithm for acoustic source localization

High-precision source localization depends on many factors, including a suitable location method. Beamforming-based methods, such as the steered response power (SRP), are a common type of acoustic localization methods. However, these methods have low spatial resolution. The SRP method with phase tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Bin, Zhang, Lichao, Nie, Pengfei, Han, Xingcheng, Han, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588096/
https://www.ncbi.nlm.nih.gov/pubmed/33105477
http://dx.doi.org/10.1371/journal.pone.0241129
Descripción
Sumario:High-precision source localization depends on many factors, including a suitable location method. Beamforming-based methods, such as the steered response power (SRP), are a common type of acoustic localization methods. However, these methods have low spatial resolution. The SRP method with phase transform (SRP-PHAT) improves the spatial resolution of SRP and is one of the most effective and robust methods for source localization. However, the introduction of a phase transform to SRP might amplify the power of the noise and result in many local extrema in the SRP space, which has a negative impact on source localization. In this paper, a steered sample algorithm (SSA) based on the reciprocity of wave propagation for acoustic source localization is proposed. The SSA localization process is similar to the hyperbolic Radon transform, which is theoretically analyzed and is the most essential difference form the SRP/SRP-PHAT. Compared with the SRP-PHAT, the experimental results demonstrate that the SSA perform better when it comes to array signal positioning with limited array elements and narrow azimuth signal, where SSA can achieve high precision positioning with lower SNR.