Cargando…

Unsupervised ranking of clustering algorithms by INFOMAX

Clustering and community detection provide a concise way of extracting meaningful information from large datasets. An ever growing plethora of data clustering and community detection algorithms have been proposed. In this paper, we address the question of ranking the performance of clustering algori...

Descripción completa

Detalles Bibliográficos
Autores principales: Sikdar, Sandipan, Mukherjee, Animesh, Marsili, Matteo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588117/
https://www.ncbi.nlm.nih.gov/pubmed/33104709
http://dx.doi.org/10.1371/journal.pone.0239331
Descripción
Sumario:Clustering and community detection provide a concise way of extracting meaningful information from large datasets. An ever growing plethora of data clustering and community detection algorithms have been proposed. In this paper, we address the question of ranking the performance of clustering algorithms for a given dataset. We show that, for hard clustering and community detection, Linsker’s Infomax principle can be used to rank clustering algorithms. In brief, the algorithm that yields the highest value of the entropy of the partition, for a given number of clusters, is the best one. We show indeed, on a wide range of datasets of various sizes and topological structures, that the ranking provided by the entropy of the partition over a variety of partitioning algorithms is strongly correlated with the overlap with a ground truth partition The codes related to the project are available in https://github.com/Sandipan99/Ranking_cluster_algorithms.