Cargando…
Unsupervised ranking of clustering algorithms by INFOMAX
Clustering and community detection provide a concise way of extracting meaningful information from large datasets. An ever growing plethora of data clustering and community detection algorithms have been proposed. In this paper, we address the question of ranking the performance of clustering algori...
Autores principales: | Sikdar, Sandipan, Mukherjee, Animesh, Marsili, Matteo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588117/ https://www.ncbi.nlm.nih.gov/pubmed/33104709 http://dx.doi.org/10.1371/journal.pone.0239331 |
Ejemplares similares
-
Discrete Infomax Codes for Supervised Representation Learning
por: Lee, Yoonho, et al.
Publicado: (2022) -
CUDAICA: GPU Optimization of Infomax-ICA EEG Analysis
por: Raimondo, Federico, et al.
Publicado: (2012) -
A biologically plausible learning rule for the Infomax on recurrent neural networks
por: Hayakawa, Takashi, et al.
Publicado: (2014) -
An unsupervised neuromorphic clustering algorithm
por: Diamond, Alan, et al.
Publicado: (2019) -
InfoMax gene networks constructed from intervention in the animal models of Parkinson's disease
por: Dashti, Hesam T, et al.
Publicado: (2007)