Cargando…
Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration
This paper presents a Bayesian analysis of linear mixed models for quantile regression based on a Cholesky decomposition for the covariance matrix of random effects. We develop a Bayesian shrinkage approach to quantile mixed regression models using a Bayesian adaptive lasso and an extended Bayesian...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588124/ https://www.ncbi.nlm.nih.gov/pubmed/33104698 http://dx.doi.org/10.1371/journal.pone.0241197 |
Sumario: | This paper presents a Bayesian analysis of linear mixed models for quantile regression based on a Cholesky decomposition for the covariance matrix of random effects. We develop a Bayesian shrinkage approach to quantile mixed regression models using a Bayesian adaptive lasso and an extended Bayesian adaptive group lasso. We also consider variable selection procedures for both fixed and random effects in a linear quantile mixed model via the Bayesian adaptive lasso and extended Bayesian adaptive group lasso with spike and slab priors. To improve mixing of the Markov chains, a simple and efficient partially collapsed Gibbs sampling algorithm is developed for posterior inference. Simulation experiments and an application to the Age-Related Macular Degeneration Trial data to demonstrate the proposed methods. |
---|