Cargando…
Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration
This paper presents a Bayesian analysis of linear mixed models for quantile regression based on a Cholesky decomposition for the covariance matrix of random effects. We develop a Bayesian shrinkage approach to quantile mixed regression models using a Bayesian adaptive lasso and an extended Bayesian...
Autores principales: | Ji, Yonggang, Shi, Haifang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588124/ https://www.ncbi.nlm.nih.gov/pubmed/33104698 http://dx.doi.org/10.1371/journal.pone.0241197 |
Ejemplares similares
-
Generalized linear mixed quantile regression with panel data
por: Lu, Xiaoming, et al.
Publicado: (2020) -
Study of Bayesian variable selection method on mixed linear regression models
por: Li, Yong, et al.
Publicado: (2023) -
Additive quantile mixed effects modelling with application to longitudinal CD4 count data
por: Yirga, Ashenafi A., et al.
Publicado: (2021) -
Randomized quantile residuals for diagnosing zero-inflated generalized linear mixed models with applications to microbiome count data
por: Bai, Wei, et al.
Publicado: (2021) -
Bayesian Variable Selection and Estimation in Semiparametric Simplex Mixed-Effects Models with Longitudinal Proportional Data
por: Tang, Anmin, et al.
Publicado: (2022)