Cargando…

A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics

We prove that, for asymptotically bounded holomorphic functions in a sector in [Formula: see text] an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the w...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiménez-Garrido, Javier, Sanz, Javier, Schindl, Gerhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588400/
https://www.ncbi.nlm.nih.gov/pubmed/33132667
http://dx.doi.org/10.1007/s12220-019-00203-5
Descripción
Sumario:We prove that, for asymptotically bounded holomorphic functions in a sector in [Formula: see text] an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by Fruchard and Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragmén–Lindelöf theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of Lindelöf and Valiron.