Cargando…
A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics
We prove that, for asymptotically bounded holomorphic functions in a sector in [Formula: see text] an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588400/ https://www.ncbi.nlm.nih.gov/pubmed/33132667 http://dx.doi.org/10.1007/s12220-019-00203-5 |
_version_ | 1783600363250647040 |
---|---|
author | Jiménez-Garrido, Javier Sanz, Javier Schindl, Gerhard |
author_facet | Jiménez-Garrido, Javier Sanz, Javier Schindl, Gerhard |
author_sort | Jiménez-Garrido, Javier |
collection | PubMed |
description | We prove that, for asymptotically bounded holomorphic functions in a sector in [Formula: see text] an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by Fruchard and Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragmén–Lindelöf theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of Lindelöf and Valiron. |
format | Online Article Text |
id | pubmed-7588400 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-75884002020-10-29 A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics Jiménez-Garrido, Javier Sanz, Javier Schindl, Gerhard J Geom Anal Article We prove that, for asymptotically bounded holomorphic functions in a sector in [Formula: see text] an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by Fruchard and Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragmén–Lindelöf theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of Lindelöf and Valiron. Springer US 2019-05-10 2020 /pmc/articles/PMC7588400/ /pubmed/33132667 http://dx.doi.org/10.1007/s12220-019-00203-5 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Jiménez-Garrido, Javier Sanz, Javier Schindl, Gerhard A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics |
title | A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics |
title_full | A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics |
title_fullStr | A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics |
title_full_unstemmed | A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics |
title_short | A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics |
title_sort | phragmén–lindelöf theorem via proximate orders, and the propagation of asymptotics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588400/ https://www.ncbi.nlm.nih.gov/pubmed/33132667 http://dx.doi.org/10.1007/s12220-019-00203-5 |
work_keys_str_mv | AT jimenezgarridojavier aphragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics AT sanzjavier aphragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics AT schindlgerhard aphragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics AT jimenezgarridojavier phragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics AT sanzjavier phragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics AT schindlgerhard phragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics |