Cargando…

A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics

We prove that, for asymptotically bounded holomorphic functions in a sector in [Formula: see text] an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the w...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiménez-Garrido, Javier, Sanz, Javier, Schindl, Gerhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588400/
https://www.ncbi.nlm.nih.gov/pubmed/33132667
http://dx.doi.org/10.1007/s12220-019-00203-5
_version_ 1783600363250647040
author Jiménez-Garrido, Javier
Sanz, Javier
Schindl, Gerhard
author_facet Jiménez-Garrido, Javier
Sanz, Javier
Schindl, Gerhard
author_sort Jiménez-Garrido, Javier
collection PubMed
description We prove that, for asymptotically bounded holomorphic functions in a sector in [Formula: see text] an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by Fruchard and Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragmén–Lindelöf theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of Lindelöf and Valiron.
format Online
Article
Text
id pubmed-7588400
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-75884002020-10-29 A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics Jiménez-Garrido, Javier Sanz, Javier Schindl, Gerhard J Geom Anal Article We prove that, for asymptotically bounded holomorphic functions in a sector in [Formula: see text] an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by Fruchard and Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragmén–Lindelöf theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of Lindelöf and Valiron. Springer US 2019-05-10 2020 /pmc/articles/PMC7588400/ /pubmed/33132667 http://dx.doi.org/10.1007/s12220-019-00203-5 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Jiménez-Garrido, Javier
Sanz, Javier
Schindl, Gerhard
A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics
title A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics
title_full A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics
title_fullStr A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics
title_full_unstemmed A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics
title_short A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics
title_sort phragmén–lindelöf theorem via proximate orders, and the propagation of asymptotics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588400/
https://www.ncbi.nlm.nih.gov/pubmed/33132667
http://dx.doi.org/10.1007/s12220-019-00203-5
work_keys_str_mv AT jimenezgarridojavier aphragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics
AT sanzjavier aphragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics
AT schindlgerhard aphragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics
AT jimenezgarridojavier phragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics
AT sanzjavier phragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics
AT schindlgerhard phragmenlindeloftheoremviaproximateordersandthepropagationofasymptotics