Cargando…

Multi-gene signature of microcalcification and risk prediction among Taiwanese breast cancer

Microcalcification is one of the most common radiological and pathological features of breast ductal carcinoma in situ (DCIS), and to a lesser extent, invasive ductal carcinoma. We evaluated messenger RNA (mRNA) transcriptional profiles associated with ectopic mammary mineralization. A total of 109...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Hsin-Tien, Huang, Ching-Shui, Tu, Chao-Chiang, Liu, Chih-Yi, Huang, Chi-Jung, Ho, Yuan-Soon, Tu, Shih-Hsin, Tseng, Ling-Ming, Huang, Chi-Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588423/
https://www.ncbi.nlm.nih.gov/pubmed/33106505
http://dx.doi.org/10.1038/s41598-020-74982-1
Descripción
Sumario:Microcalcification is one of the most common radiological and pathological features of breast ductal carcinoma in situ (DCIS), and to a lesser extent, invasive ductal carcinoma. We evaluated messenger RNA (mRNA) transcriptional profiles associated with ectopic mammary mineralization. A total of 109 breast cancers were assayed with oligonucleotide microarrays. The associations of mRNA abundance with microcalcifications and relevant clinical features were evaluated. Microcalcifications were present in 86 (79%) patients by pathological examination, and 81 (94%) were with coexistent DCIS, while only 13 (57%) of 23 patients without microcalcification, the invasive diseases were accompanied with DCIS (χ(2)-test, P < 0.001). There were 69 genes with differential mRNA abundance between breast cancers with and without microcalcifications, and 11 were associated with high-grade (comedo) type DCIS. Enriched Gene Ontology categories included glycosaminoglycan and aminoglycan metabolic processes and protein ubiquitination, indicating an active secretory process. The intersection (18 genes) of microcalcificaion-associated and DCIS-associated genes provided the best predictive accuracy of 82% with Bayesian compound covariate predictor. Ten genes were further selected for prognostic index score construction, and five-year relapse free survival was 91% for low-risk and 83% for high-risk group (log-rank test, P = 0.10). Our study suggested that microcalcification is not only the earliest detectable radiological sign for mammography screening but the phenomenon itself may reflect the underling events during mammary carcinogenesis. Future studies to evaluate the prognostic significance of microcalcifications are warranted.