Cargando…
A multiresolution framework to characterize single-cell state landscapes
Dissecting the cellular heterogeneity embedded in single-cell transcriptomic data is challenging. Although many methods and approaches exist, identifying cell states and their underlying topology is still a major challenge. Here, we introduce the concept of multiresolution cell-state decomposition a...
Autores principales: | Mohammadi, Shahin, Davila-Velderrain, Jose, Kellis, Manolis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588427/ https://www.ncbi.nlm.nih.gov/pubmed/33106496 http://dx.doi.org/10.1038/s41467-020-18416-6 |
Ejemplares similares
-
Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization
por: Liu, Dianbo, et al.
Publicado: (2019) -
NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data
por: He, Liang, et al.
Publicado: (2021) -
Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration
por: Menon, Madhvi, et al.
Publicado: (2019) -
Explicit-memory multiresolution adaptive framework for speech and music separation
por: Bellur, Ashwin, et al.
Publicado: (2023) -
A multiresolution framework for the analysis of community structure in international trade networks
por: Cho, Wonguk, et al.
Publicado: (2023)