Cargando…
Genome-wide identification of accessible chromatin regions in bumblebee by ATAC-seq
Bumblebees (Hymenoptera: Apidae) are important pollinating insects that play pivotal roles in crop production and natural ecosystem services. Although protein-coding genes in bumblebees have been extensively annotated, regulatory sequences of the genome, such as promoters and enhancers, have been po...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588436/ https://www.ncbi.nlm.nih.gov/pubmed/33106500 http://dx.doi.org/10.1038/s41597-020-00713-w |
Sumario: | Bumblebees (Hymenoptera: Apidae) are important pollinating insects that play pivotal roles in crop production and natural ecosystem services. Although protein-coding genes in bumblebees have been extensively annotated, regulatory sequences of the genome, such as promoters and enhancers, have been poorly annotated. To achieve a comprehensive profile of accessible chromatin regions and provide clues for all possible regulatory elements in the bumblebee genome, we performed ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) on Bombus terrestris samples derived from four developmental stages: egg, larva, pupa, and adult, respectively. The ATAC-seq reads were mapped to the B. terrestris reference genome, and its accessible chromatin regions were identified and characterized using bioinformatic methods. We identified 36,390 chromatin accessible regions in total, including both shared and stage-specific chromatin accessible signals. Our study will provide an important resource, not only for uncovering regulatory elements in the bumblebee genome, but also for expanding our understanding of bumblebee biology throughout development. |
---|