Cargando…
Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models
Blood lead (Pb(II)) removal is very important but challenging. The main difficulty of blood Pb(II) removal currently lies in the fact that blood Pb(II) is mainly complexed with hemoglobin (Hb) inside the red blood cells (RBCs). Traditional blood Pb(II) removers are mostly passive particles that do n...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588752/ https://www.ncbi.nlm.nih.gov/pubmed/33134607 http://dx.doi.org/10.1016/j.bioactmat.2020.09.032 |
_version_ | 1783600429214466048 |
---|---|
author | Wang, Meng Bao, Tianyi Yan, Wenqiang Fang, Dan Yu, Yueqi Liu, Zhiyong Yin, Guoyong Wan, Mimi Mao, Chun Shi, Dongquan |
author_facet | Wang, Meng Bao, Tianyi Yan, Wenqiang Fang, Dan Yu, Yueqi Liu, Zhiyong Yin, Guoyong Wan, Mimi Mao, Chun Shi, Dongquan |
author_sort | Wang, Meng |
collection | PubMed |
description | Blood lead (Pb(II)) removal is very important but challenging. The main difficulty of blood Pb(II) removal currently lies in the fact that blood Pb(II) is mainly complexed with hemoglobin (Hb) inside the red blood cells (RBCs). Traditional blood Pb(II) removers are mostly passive particles that do not have the motion ability, thus the efficiency of the contact between the adsorbent and the Pb(II)-contaminated Hb is relatively low. Herein, a kind of magnetic nanomotor adsorbent with movement ability under alternating magnetic field based on Fe(3)O(4) nanoparticle modified with meso-2, 3-dimercaptosuccinic acid (DMSA) was prepared and a blood Pb(II) removal strategy was further proposed. During the removal process, the nanomotor adsorbent can enter the RBCs, then the contact probability between the nanomotor adsorbent and the Pb(II)-contaminated Hb can be increased by the active movement of nanomotor. Through the strong coordination of functional groups in DMSA, the nanomotor adsorbent can adsorb Pb(II), and finally be separated from blood by permanent magnetic field. The in vivo extracorporeal blood circulation experiment verifies the ability of the adsorbent to remove blood Pb(II) in pig models, which may provide innovative ideas for blood heavy metal removal in the future. |
format | Online Article Text |
id | pubmed-7588752 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-75887522020-10-30 Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models Wang, Meng Bao, Tianyi Yan, Wenqiang Fang, Dan Yu, Yueqi Liu, Zhiyong Yin, Guoyong Wan, Mimi Mao, Chun Shi, Dongquan Bioact Mater Article Blood lead (Pb(II)) removal is very important but challenging. The main difficulty of blood Pb(II) removal currently lies in the fact that blood Pb(II) is mainly complexed with hemoglobin (Hb) inside the red blood cells (RBCs). Traditional blood Pb(II) removers are mostly passive particles that do not have the motion ability, thus the efficiency of the contact between the adsorbent and the Pb(II)-contaminated Hb is relatively low. Herein, a kind of magnetic nanomotor adsorbent with movement ability under alternating magnetic field based on Fe(3)O(4) nanoparticle modified with meso-2, 3-dimercaptosuccinic acid (DMSA) was prepared and a blood Pb(II) removal strategy was further proposed. During the removal process, the nanomotor adsorbent can enter the RBCs, then the contact probability between the nanomotor adsorbent and the Pb(II)-contaminated Hb can be increased by the active movement of nanomotor. Through the strong coordination of functional groups in DMSA, the nanomotor adsorbent can adsorb Pb(II), and finally be separated from blood by permanent magnetic field. The in vivo extracorporeal blood circulation experiment verifies the ability of the adsorbent to remove blood Pb(II) in pig models, which may provide innovative ideas for blood heavy metal removal in the future. KeAi Publishing 2020-10-23 /pmc/articles/PMC7588752/ /pubmed/33134607 http://dx.doi.org/10.1016/j.bioactmat.2020.09.032 Text en © 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Wang, Meng Bao, Tianyi Yan, Wenqiang Fang, Dan Yu, Yueqi Liu, Zhiyong Yin, Guoyong Wan, Mimi Mao, Chun Shi, Dongquan Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models |
title | Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models |
title_full | Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models |
title_fullStr | Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models |
title_full_unstemmed | Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models |
title_short | Nanomotor-based adsorbent for blood Lead(II) removal in vitro and in pig models |
title_sort | nanomotor-based adsorbent for blood lead(ii) removal in vitro and in pig models |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588752/ https://www.ncbi.nlm.nih.gov/pubmed/33134607 http://dx.doi.org/10.1016/j.bioactmat.2020.09.032 |
work_keys_str_mv | AT wangmeng nanomotorbasedadsorbentforbloodleadiiremovalinvitroandinpigmodels AT baotianyi nanomotorbasedadsorbentforbloodleadiiremovalinvitroandinpigmodels AT yanwenqiang nanomotorbasedadsorbentforbloodleadiiremovalinvitroandinpigmodels AT fangdan nanomotorbasedadsorbentforbloodleadiiremovalinvitroandinpigmodels AT yuyueqi nanomotorbasedadsorbentforbloodleadiiremovalinvitroandinpigmodels AT liuzhiyong nanomotorbasedadsorbentforbloodleadiiremovalinvitroandinpigmodels AT yinguoyong nanomotorbasedadsorbentforbloodleadiiremovalinvitroandinpigmodels AT wanmimi nanomotorbasedadsorbentforbloodleadiiremovalinvitroandinpigmodels AT maochun nanomotorbasedadsorbentforbloodleadiiremovalinvitroandinpigmodels AT shidongquan nanomotorbasedadsorbentforbloodleadiiremovalinvitroandinpigmodels |