Cargando…

Separation of Fructose and Glucose via Nanofiltration in Presence of Fructooligosaccharides

Fructose and glucose are commonly present together in mixtures and may need to be separated. Current separation methods for these isomers are complex and costly. Nanofiltration is a cost-effective method that has been widely used for separating carbohydrates of different sizes; however, it is not co...

Descripción completa

Detalles Bibliográficos
Autores principales: Rizki, Zulhaj, Janssen, Anja E. M., van der Padt, Albert, Boom, Remko M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588886/
https://www.ncbi.nlm.nih.gov/pubmed/33096910
http://dx.doi.org/10.3390/membranes10100298
Descripción
Sumario:Fructose and glucose are commonly present together in mixtures and may need to be separated. Current separation methods for these isomers are complex and costly. Nanofiltration is a cost-effective method that has been widely used for separating carbohydrates of different sizes; however, it is not commonly used for such similar molecules. Here, we report the separation of fructose and glucose in a nanofiltration system in the presence of fructooligosaccharides (FOS). Experiments were performed using a pilot-scale filtration setup using a spiral wound nanofiltration membrane with molecular weight cutoff of 1 kDa. We observed three important factors that affected the separation: (1) separation of monosaccharides only occurred in the presence of FOS and became more effective when FOS dominated the solution; (2) better separation was achieved when the monosaccharides were mainly fructose; and (3) the presence of salt improved the separation only moderately. The rejection ratio (R(f)/R(g)) in a fructose/glucose mixture is 0.92. We reported a rejection ratio of 0.69, which was observed in a mixture of 50 g/L FOS with a fructose to glucose ratio of 4.43. The separation is hypothesized to occur due to selective transport in the FOS layer, resulting in a preferential binding towards fructose.