Cargando…
Nonintrusive Fine-Grained Home Care Monitoring: Characterizing Quality of In-Home Postural Changes Using Bone-Based Human Sensing
In contrast to the physical activities of able-bodied people at home, most people who require long-term specific care (e.g., bedridden patients and patients who have difficulty walking) usually show more low-intensity slow physical activities with postural changes. Although the existing devices can...
Autores principales: | Chen, Sinan, Saiki, Sachio, Nakamura, Masahide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588905/ https://www.ncbi.nlm.nih.gov/pubmed/33081059 http://dx.doi.org/10.3390/s20205894 |
Ejemplares similares
-
Integrating Multiple Models Using Image-as-Documents Approach for Recognizing Fine-Grained Home Contexts †
por: Chen, Sinan, et al.
Publicado: (2020) -
Toward Flexible and Efficient Home Context Sensing: Capability Evaluation and Verification of Image-Based Cognitive APIs †
por: Chen, Sinan, et al.
Publicado: (2020) -
Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature
por: Kim, Jihyun, et al.
Publicado: (2017) -
Explainability-Informed Feature Selection and Performance Prediction for Nonintrusive Load Monitoring †
por: Mollel, Rachel Stephen, et al.
Publicado: (2023) -
Toward Capturing Scientific Evidence in Elderly Care: Efficient Extraction of Changing Facial Feature Points †
por: Hirayama, Kosuke, et al.
Publicado: (2021)