Cargando…
Development of Magnetic Nanobeads Modified by Artificial Fluorescent Peptides for the Highly Sensitive and Selective Analysis of Oxytocin
We describe two novel fluorescent peptides (compounds 1 and 2) targeting oxytocin with a boron-dipyrromethenyl group as the fluorophore bound to an artificial peptide based on the oxytocin receptor, and their application for the analysis of oxytocin levels in human serum using nanometer-sized magnet...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588987/ https://www.ncbi.nlm.nih.gov/pubmed/33096804 http://dx.doi.org/10.3390/s20205956 |
Sumario: | We describe two novel fluorescent peptides (compounds 1 and 2) targeting oxytocin with a boron-dipyrromethenyl group as the fluorophore bound to an artificial peptide based on the oxytocin receptor, and their application for the analysis of oxytocin levels in human serum using nanometer-sized magnetic beads modified by fluorescent peptides (FMB-1 and FMB-2). Under the optimized experimental protocols, FMB-1 and FMB-2 emitted low levels of fluorescence but emitted much higher levels of fluorescence when associated with oxytocin. The detection limit of oxytocin by FMB-2 was 0.4 pM, which is approximately 37.5 times higher than that of conventional methods, such as ELISA. Using these fluorescent sensors, oxytocin was specifically detected over a wide linear range with high sensitivity, good reusability, stability, precision, and reproducibility. This fluorescent sensor-based detection system thus enabled the measurement of oxytocin levels in human serum, which has widespread applications for oxytocin assays across varied research fields. |
---|