Cargando…
Feature Selection Model based on EEG Signals for Assessing the Cognitive Workload in Drivers
In recent years, research has focused on generating mechanisms to assess the levels of subjects’ cognitive workload when performing various activities that demand high concentration levels, such as driving a vehicle. These mechanisms have implemented several tools for analyzing the cognitive workloa...
Autores principales: | Becerra-Sánchez, Patricia, Reyes-Munoz, Angelica, Guerrero-Ibañez, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589097/ https://www.ncbi.nlm.nih.gov/pubmed/33080866 http://dx.doi.org/10.3390/s20205881 |
Ejemplares similares
-
Parallel Mechanism of Spectral Feature-Enhanced Maps in EEG-Based Cognitive Workload Classification
por: Zhang, Yihong, et al.
Publicado: (2019) -
EEG Theta Power Activity Reflects Workload among Army Combat Drivers: An Experimental Study
por: Diaz-Piedra, Carolina, et al.
Publicado: (2020) -
Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using EEG
por: Tremmel, Christoph, et al.
Publicado: (2019) -
Classification of Drivers' Workload Using Physiological Signals in Conditional Automation
por: Meteier, Quentin, et al.
Publicado: (2021) -
Feature selection of EEG signals in neuromarketing
por: Al-Nafjan, Abeer
Publicado: (2022)