Cargando…
Clustering on Human Microbiome Sequencing Data: A Distance-Based Unsupervised Learning Model
Modeling and analyzing human microbiome allows the assessment of the microbial community and its impacts on human health. Microbiome composition can be quantified using 16S rRNA technology into sequencing data, which are usually skewed and heavy-tailed with excess zeros. Clustering methods are usefu...
Autores principales: | Yang, Dongyang, Xu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589204/ https://www.ncbi.nlm.nih.gov/pubmed/33092203 http://dx.doi.org/10.3390/microorganisms8101612 |
Ejemplares similares
-
Performance determinants of unsupervised clustering methods for microbiome data
por: Shi, Yushu, et al.
Publicado: (2022) -
Over-optimism in unsupervised microbiome analysis: Insights from network learning and clustering
por: Ullmann, Theresa, et al.
Publicado: (2023) -
Microbiome Features Differentiating Unsupervised-Stratification-Based Clusters of Patients with Abnormal Glycometabolism
por: Xu, Ting, et al.
Publicado: (2023) -
DeLUCS: Deep learning for unsupervised clustering of DNA sequences
por: Millán Arias, Pablo, et al.
Publicado: (2022) -
GibbsCluster: unsupervised clustering and alignment of peptide sequences
por: Andreatta, Massimo, et al.
Publicado: (2017)