Cargando…
Supercritical Water is not Hydrogen Bonded
Thinking about water is inextricably linked to hydrogen bonds, which are highly directional in character and determine the unique structure of water, in particular its tetrahedral H‐bond network. Here, we assess if this common connotation also holds for supercritical water. We employ extensive ab in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589343/ https://www.ncbi.nlm.nih.gov/pubmed/32749016 http://dx.doi.org/10.1002/anie.202009640 |
Sumario: | Thinking about water is inextricably linked to hydrogen bonds, which are highly directional in character and determine the unique structure of water, in particular its tetrahedral H‐bond network. Here, we assess if this common connotation also holds for supercritical water. We employ extensive ab initio molecular dynamics simulations to systematically monitor the evolution of the H‐bond network mode of water from room temperature, where it is the hallmark of its fluctuating three‐dimensional network structure, to supercritical conditions. Our simulations reveal that the oscillation period required for H‐bond vibrations to occur exceeds the lifetime of H‐bonds in supercritical water by far. Instead, the corresponding low‐frequency intermolecular vibrations of water pairs as seen in supercritical water are found to be well represented by isotropic van‐der‐Waals interactions only. Based on these findings, we conclude that water in its supercritical phase is not a H‐bonded fluid. |
---|