Cargando…
Comprehensive Analysis of Tumour Sub-Volumes for Radiomic Risk Modelling in Locally Advanced HNSCC
SIMPLE SUMMARY: Radiomic risk models are usually based on imaging features, which are extracted from the entire gross tumour volume (GTV [Formula: see text]). This approach does not explicitly consider the complex biological structure of the tumours. Therefore, in this retrospective study, we invest...
Autores principales: | Leger, Stefan, Zwanenburg, Alex, Leger, Karoline, Lohaus, Fabian, Linge, Annett, Schreiber, Andreas, Kalinauskaite, Goda, Tinhofer, Inge, Guberina, Nika, Guberina, Maja, Balermpas, Panagiotis, von der Grün, Jens, Ganswindt, Ute, Belka, Claus, Peeken, Jan C., Combs, Stephanie E., Boeke, Simon, Zips, Daniel, Richter, Christian, Krause, Mechthild, Baumann, Michael, Troost, Esther G.C., Löck, Steffen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589463/ https://www.ncbi.nlm.nih.gov/pubmed/33086761 http://dx.doi.org/10.3390/cancers12103047 |
Ejemplares similares
-
Multitask Learning with Convolutional Neural Networks and Vision Transformers Can Improve Outcome Prediction for Head and Neck Cancer Patients
por: Starke, Sebastian, et al.
Publicado: (2023) -
2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma
por: Starke, Sebastian, et al.
Publicado: (2020) -
Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC
por: Rabasco Meneghetti, Asier, et al.
Publicado: (2022) -
A Novel 2-Metagene Signature to Identify High-Risk HNSCC Patients amongst Those Who Are Clinically at Intermediate Risk and Are Treated with PORT
por: Patil, Shivaprasad, et al.
Publicado: (2022) -
A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
por: Leger, Stefan, et al.
Publicado: (2017)