Cargando…
Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis
Hyperuricemia (HUA) is a risk factor for chronic kidney disease (CKD). Serum uric acid (SUA) levels in CKD stage 3–4 patients closely correlate with hyperuricemic nephropathy (HN) morbidity. New uric acid (UA)-lowering strategies are required to prevent CKD. The multiple-purpose connectivity map (CM...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589473/ https://www.ncbi.nlm.nih.gov/pubmed/33080936 http://dx.doi.org/10.3390/ijms21207695 |
_version_ | 1783600587405787136 |
---|---|
author | Wang, Yiming Kong, Weikaixin Wang, Liang Zhang, Tianyu Huang, Boyue Meng, Jia Yang, Baoxue Xie, Zhengwei Zhou, Hong |
author_facet | Wang, Yiming Kong, Weikaixin Wang, Liang Zhang, Tianyu Huang, Boyue Meng, Jia Yang, Baoxue Xie, Zhengwei Zhou, Hong |
author_sort | Wang, Yiming |
collection | PubMed |
description | Hyperuricemia (HUA) is a risk factor for chronic kidney disease (CKD). Serum uric acid (SUA) levels in CKD stage 3–4 patients closely correlate with hyperuricemic nephropathy (HN) morbidity. New uric acid (UA)-lowering strategies are required to prevent CKD. The multiple-purpose connectivity map (CMAP) was used to discover potential molecules against HUA and renal fibrosis. We used HUA and unilateral ureteral occlusion (UUO) model mice to verify renoprotective effects of molecules and explore related mechanisms. In vitro experiments were performed in HepG2 and NRK-52E cells induced by UA. Esculetin was the top scoring compound and lowered serum uric acid (SUA) levels with dual functions on UA excretion. Esculetin exerted these effects by inhibiting expression and activity of xanthine oxidase (XO) in liver, and modulating UA transporters in kidney. The mechanism by which esculetin suppressed XO was related to inhibiting the nuclear translocation of hexokinase 2 (HK2). Esculetin was anti-fibrotic in HUA and UUO mice through inhibiting TGF-β1-activated profibrotic signals. The renoprotection effects of esculetin in HUA mice were associated with lower SUA, alleviation of oxidative stress, and inhibition of fibrosis. Esculetin is a candidate urate-lowering drug with renoprotective activity and the ability to inhibit XO, promote excretion of UA, protect oxidative stress injury, and reduce renal fibrosis. |
format | Online Article Text |
id | pubmed-7589473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75894732020-10-29 Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis Wang, Yiming Kong, Weikaixin Wang, Liang Zhang, Tianyu Huang, Boyue Meng, Jia Yang, Baoxue Xie, Zhengwei Zhou, Hong Int J Mol Sci Article Hyperuricemia (HUA) is a risk factor for chronic kidney disease (CKD). Serum uric acid (SUA) levels in CKD stage 3–4 patients closely correlate with hyperuricemic nephropathy (HN) morbidity. New uric acid (UA)-lowering strategies are required to prevent CKD. The multiple-purpose connectivity map (CMAP) was used to discover potential molecules against HUA and renal fibrosis. We used HUA and unilateral ureteral occlusion (UUO) model mice to verify renoprotective effects of molecules and explore related mechanisms. In vitro experiments were performed in HepG2 and NRK-52E cells induced by UA. Esculetin was the top scoring compound and lowered serum uric acid (SUA) levels with dual functions on UA excretion. Esculetin exerted these effects by inhibiting expression and activity of xanthine oxidase (XO) in liver, and modulating UA transporters in kidney. The mechanism by which esculetin suppressed XO was related to inhibiting the nuclear translocation of hexokinase 2 (HK2). Esculetin was anti-fibrotic in HUA and UUO mice through inhibiting TGF-β1-activated profibrotic signals. The renoprotection effects of esculetin in HUA mice were associated with lower SUA, alleviation of oxidative stress, and inhibition of fibrosis. Esculetin is a candidate urate-lowering drug with renoprotective activity and the ability to inhibit XO, promote excretion of UA, protect oxidative stress injury, and reduce renal fibrosis. MDPI 2020-10-18 /pmc/articles/PMC7589473/ /pubmed/33080936 http://dx.doi.org/10.3390/ijms21207695 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Yiming Kong, Weikaixin Wang, Liang Zhang, Tianyu Huang, Boyue Meng, Jia Yang, Baoxue Xie, Zhengwei Zhou, Hong Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis |
title | Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis |
title_full | Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis |
title_fullStr | Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis |
title_full_unstemmed | Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis |
title_short | Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis |
title_sort | multiple-purpose connectivity map analysis reveals the benefits of esculetin to hyperuricemia and renal fibrosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589473/ https://www.ncbi.nlm.nih.gov/pubmed/33080936 http://dx.doi.org/10.3390/ijms21207695 |
work_keys_str_mv | AT wangyiming multiplepurposeconnectivitymapanalysisrevealsthebenefitsofesculetintohyperuricemiaandrenalfibrosis AT kongweikaixin multiplepurposeconnectivitymapanalysisrevealsthebenefitsofesculetintohyperuricemiaandrenalfibrosis AT wangliang multiplepurposeconnectivitymapanalysisrevealsthebenefitsofesculetintohyperuricemiaandrenalfibrosis AT zhangtianyu multiplepurposeconnectivitymapanalysisrevealsthebenefitsofesculetintohyperuricemiaandrenalfibrosis AT huangboyue multiplepurposeconnectivitymapanalysisrevealsthebenefitsofesculetintohyperuricemiaandrenalfibrosis AT mengjia multiplepurposeconnectivitymapanalysisrevealsthebenefitsofesculetintohyperuricemiaandrenalfibrosis AT yangbaoxue multiplepurposeconnectivitymapanalysisrevealsthebenefitsofesculetintohyperuricemiaandrenalfibrosis AT xiezhengwei multiplepurposeconnectivitymapanalysisrevealsthebenefitsofesculetintohyperuricemiaandrenalfibrosis AT zhouhong multiplepurposeconnectivitymapanalysisrevealsthebenefitsofesculetintohyperuricemiaandrenalfibrosis |