Cargando…
Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images
In order to enable timely actions to prevent major losses of crops caused by lack of nutrients and, hence, increase the potential yield throughout the growing season while at the same time prevent excess fertilization with detrimental environmental consequences, early, non-invasive, and on-site dete...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589690/ https://www.ncbi.nlm.nih.gov/pubmed/33080979 http://dx.doi.org/10.3390/s20205893 |
_version_ | 1783600636448735232 |
---|---|
author | Yi, Jinhui Krusenbaum, Lukas Unger, Paula Hüging, Hubert Seidel, Sabine J. Schaaf, Gabriel Gall, Juergen |
author_facet | Yi, Jinhui Krusenbaum, Lukas Unger, Paula Hüging, Hubert Seidel, Sabine J. Schaaf, Gabriel Gall, Juergen |
author_sort | Yi, Jinhui |
collection | PubMed |
description | In order to enable timely actions to prevent major losses of crops caused by lack of nutrients and, hence, increase the potential yield throughout the growing season while at the same time prevent excess fertilization with detrimental environmental consequences, early, non-invasive, and on-site detection of nutrient deficiency is required. Current non-invasive methods for assessing the nutrient status of crops deal in most cases with nitrogen (N) deficiency only and optical sensors to diagnose N deficiency, such as chlorophyll meters or canopy reflectance sensors, do not monitor N, but instead measure changes in leaf spectral properties that may or may not be caused by N deficiency. In this work, we study how well nutrient deficiency symptoms can be recognized in RGB images of sugar beets. To this end, we collected the Deep Nutrient Deficiency for Sugar Beet (DND-SB) dataset, which contains 5648 images of sugar beets growing on a long-term fertilizer experiment with nutrient deficiency plots comprising N, phosphorous (P), and potassium (K) deficiency, as well as the omission of liming (Ca), full fertilization, and no fertilization at all. We use the dataset to analyse the performance of five convolutional neural networks for recognizing nutrient deficiency symptoms and discuss their limitations. |
format | Online Article Text |
id | pubmed-7589690 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75896902020-10-29 Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images Yi, Jinhui Krusenbaum, Lukas Unger, Paula Hüging, Hubert Seidel, Sabine J. Schaaf, Gabriel Gall, Juergen Sensors (Basel) Article In order to enable timely actions to prevent major losses of crops caused by lack of nutrients and, hence, increase the potential yield throughout the growing season while at the same time prevent excess fertilization with detrimental environmental consequences, early, non-invasive, and on-site detection of nutrient deficiency is required. Current non-invasive methods for assessing the nutrient status of crops deal in most cases with nitrogen (N) deficiency only and optical sensors to diagnose N deficiency, such as chlorophyll meters or canopy reflectance sensors, do not monitor N, but instead measure changes in leaf spectral properties that may or may not be caused by N deficiency. In this work, we study how well nutrient deficiency symptoms can be recognized in RGB images of sugar beets. To this end, we collected the Deep Nutrient Deficiency for Sugar Beet (DND-SB) dataset, which contains 5648 images of sugar beets growing on a long-term fertilizer experiment with nutrient deficiency plots comprising N, phosphorous (P), and potassium (K) deficiency, as well as the omission of liming (Ca), full fertilization, and no fertilization at all. We use the dataset to analyse the performance of five convolutional neural networks for recognizing nutrient deficiency symptoms and discuss their limitations. MDPI 2020-10-18 /pmc/articles/PMC7589690/ /pubmed/33080979 http://dx.doi.org/10.3390/s20205893 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yi, Jinhui Krusenbaum, Lukas Unger, Paula Hüging, Hubert Seidel, Sabine J. Schaaf, Gabriel Gall, Juergen Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images |
title | Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images |
title_full | Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images |
title_fullStr | Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images |
title_full_unstemmed | Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images |
title_short | Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images |
title_sort | deep learning for non-invasive diagnosis of nutrient deficiencies in sugar beet using rgb images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589690/ https://www.ncbi.nlm.nih.gov/pubmed/33080979 http://dx.doi.org/10.3390/s20205893 |
work_keys_str_mv | AT yijinhui deeplearningfornoninvasivediagnosisofnutrientdeficienciesinsugarbeetusingrgbimages AT krusenbaumlukas deeplearningfornoninvasivediagnosisofnutrientdeficienciesinsugarbeetusingrgbimages AT ungerpaula deeplearningfornoninvasivediagnosisofnutrientdeficienciesinsugarbeetusingrgbimages AT huginghubert deeplearningfornoninvasivediagnosisofnutrientdeficienciesinsugarbeetusingrgbimages AT seidelsabinej deeplearningfornoninvasivediagnosisofnutrientdeficienciesinsugarbeetusingrgbimages AT schaafgabriel deeplearningfornoninvasivediagnosisofnutrientdeficienciesinsugarbeetusingrgbimages AT galljuergen deeplearningfornoninvasivediagnosisofnutrientdeficienciesinsugarbeetusingrgbimages |