Cargando…
Deep Learning for Non-Invasive Diagnosis of Nutrient Deficiencies in Sugar Beet Using RGB Images
In order to enable timely actions to prevent major losses of crops caused by lack of nutrients and, hence, increase the potential yield throughout the growing season while at the same time prevent excess fertilization with detrimental environmental consequences, early, non-invasive, and on-site dete...
Autores principales: | Yi, Jinhui, Krusenbaum, Lukas, Unger, Paula, Hüging, Hubert, Seidel, Sabine J., Schaaf, Gabriel, Gall, Juergen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589690/ https://www.ncbi.nlm.nih.gov/pubmed/33080979 http://dx.doi.org/10.3390/s20205893 |
Ejemplares similares
-
Effect of Conformation of Sugar Beet Pectin on the Interfacial and Emulsifying Properties
por: Bindereif, Benjamin, et al.
Publicado: (2022) -
The Multilateral Efficacy of Chitosan and Trichoderma on Sugar Beet
por: Kappel, Lisa, et al.
Publicado: (2022) -
Crookes on Beet-Root Sugar
Publicado: (1870) -
Condensed Description of the Manufacture of Beet-Sugar
Publicado: (1922) -
OMICS Technologies and Applications in Sugar Beet
por: Zhang, Yongxue, et al.
Publicado: (2016)