Cargando…
Rectification and Super-Resolution Enhancements for Forensic Text Recognition †
Retrieving text embedded within images is a challenging task in real-world settings. Multiple problems such as low-resolution and the orientation of the text can hinder the extraction of information. These problems are common in environments such as Tor Darknet and Child Sexual Abuse images, where t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589711/ https://www.ncbi.nlm.nih.gov/pubmed/33081134 http://dx.doi.org/10.3390/s20205850 |
_version_ | 1783600641400111104 |
---|---|
author | Blanco-Medina, Pablo Fidalgo, Eduardo Alegre, Enrique Alaiz-Rodríguez, Rocío Jáñez-Martino, Francisco Bonnici, Alexandra |
author_facet | Blanco-Medina, Pablo Fidalgo, Eduardo Alegre, Enrique Alaiz-Rodríguez, Rocío Jáñez-Martino, Francisco Bonnici, Alexandra |
author_sort | Blanco-Medina, Pablo |
collection | PubMed |
description | Retrieving text embedded within images is a challenging task in real-world settings. Multiple problems such as low-resolution and the orientation of the text can hinder the extraction of information. These problems are common in environments such as Tor Darknet and Child Sexual Abuse images, where text extraction is crucial in the prevention of illegal activities. In this work, we evaluate eight text recognizers and, to increase the performance of text transcription, we combine these recognizers with rectification networks and super-resolution algorithms. We test our approach on four state-of-the-art and two custom datasets (TOICO-1K and Child Sexual Abuse (CSA)-text, based on text retrieved from Tor Darknet and Child Sexual Exploitation Material, respectively). We obtained a 0.3170 score of correctly recognized words in the TOICO-1K dataset when we combined Deep Convolutional Neural Networks (CNN) and rectification-based recognizers. For the CSA-text dataset, applying resolution enhancements achieved a final score of 0.6960. The highest performance increase was achieved on the ICDAR 2015 dataset, with an improvement of 4.83% when combining the MORAN recognizer and the Residual Dense resolution approach. We conclude that rectification outperforms super-resolution when applied separately, while their combination achieves the best average improvements in the chosen datasets. |
format | Online Article Text |
id | pubmed-7589711 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75897112020-10-29 Rectification and Super-Resolution Enhancements for Forensic Text Recognition † Blanco-Medina, Pablo Fidalgo, Eduardo Alegre, Enrique Alaiz-Rodríguez, Rocío Jáñez-Martino, Francisco Bonnici, Alexandra Sensors (Basel) Article Retrieving text embedded within images is a challenging task in real-world settings. Multiple problems such as low-resolution and the orientation of the text can hinder the extraction of information. These problems are common in environments such as Tor Darknet and Child Sexual Abuse images, where text extraction is crucial in the prevention of illegal activities. In this work, we evaluate eight text recognizers and, to increase the performance of text transcription, we combine these recognizers with rectification networks and super-resolution algorithms. We test our approach on four state-of-the-art and two custom datasets (TOICO-1K and Child Sexual Abuse (CSA)-text, based on text retrieved from Tor Darknet and Child Sexual Exploitation Material, respectively). We obtained a 0.3170 score of correctly recognized words in the TOICO-1K dataset when we combined Deep Convolutional Neural Networks (CNN) and rectification-based recognizers. For the CSA-text dataset, applying resolution enhancements achieved a final score of 0.6960. The highest performance increase was achieved on the ICDAR 2015 dataset, with an improvement of 4.83% when combining the MORAN recognizer and the Residual Dense resolution approach. We conclude that rectification outperforms super-resolution when applied separately, while their combination achieves the best average improvements in the chosen datasets. MDPI 2020-10-16 /pmc/articles/PMC7589711/ /pubmed/33081134 http://dx.doi.org/10.3390/s20205850 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Blanco-Medina, Pablo Fidalgo, Eduardo Alegre, Enrique Alaiz-Rodríguez, Rocío Jáñez-Martino, Francisco Bonnici, Alexandra Rectification and Super-Resolution Enhancements for Forensic Text Recognition † |
title | Rectification and Super-Resolution Enhancements for Forensic Text Recognition † |
title_full | Rectification and Super-Resolution Enhancements for Forensic Text Recognition † |
title_fullStr | Rectification and Super-Resolution Enhancements for Forensic Text Recognition † |
title_full_unstemmed | Rectification and Super-Resolution Enhancements for Forensic Text Recognition † |
title_short | Rectification and Super-Resolution Enhancements for Forensic Text Recognition † |
title_sort | rectification and super-resolution enhancements for forensic text recognition † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589711/ https://www.ncbi.nlm.nih.gov/pubmed/33081134 http://dx.doi.org/10.3390/s20205850 |
work_keys_str_mv | AT blancomedinapablo rectificationandsuperresolutionenhancementsforforensictextrecognition AT fidalgoeduardo rectificationandsuperresolutionenhancementsforforensictextrecognition AT alegreenrique rectificationandsuperresolutionenhancementsforforensictextrecognition AT alaizrodriguezrocio rectificationandsuperresolutionenhancementsforforensictextrecognition AT janezmartinofrancisco rectificationandsuperresolutionenhancementsforforensictextrecognition AT bonnicialexandra rectificationandsuperresolutionenhancementsforforensictextrecognition |