Cargando…
Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR)
Zirconia ceramics such as ceria-stabilized zirconia/alumina nanocomposites (nano-ZR) are applied as implant materials due to their excellent mechanical properties. However, surface treatment is required to obtain sufficient biocompatibility. In the present study, we explored the material surface fun...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589822/ https://www.ncbi.nlm.nih.gov/pubmed/33050494 http://dx.doi.org/10.3390/ijms21207476 |
_version_ | 1783600667299938304 |
---|---|
author | Takao, Seiji Komasa, Satoshi Agariguchi, Akinori Kusumoto, Tetsuji Pezzotti, Giuseppe Okazaki, Joji |
author_facet | Takao, Seiji Komasa, Satoshi Agariguchi, Akinori Kusumoto, Tetsuji Pezzotti, Giuseppe Okazaki, Joji |
author_sort | Takao, Seiji |
collection | PubMed |
description | Zirconia ceramics such as ceria-stabilized zirconia/alumina nanocomposites (nano-ZR) are applied as implant materials due to their excellent mechanical properties. However, surface treatment is required to obtain sufficient biocompatibility. In the present study, we explored the material surface functionalization and assessed the initial adhesion of rat bone marrow mesenchymal stem cells, their osteogenic differentiation, and production of hard tissue, on plasma-treated alkali-modified nano-ZR. Superhydrophilicity was observed on the plasma-treated surface of alkali-treated nano-ZR along with hydroxide formation and reduced surface carbon. A decreased contact angle was also observed as nano-ZR attained an appropriate wettability index. Treated samples showed higher in vitro bovine serum albumin (BSA) adsorption, initial adhesion of bone marrow and endothelial vascular cells, high alkaline phosphatase activity, and increased expression of bone differentiation-related factors. Furthermore, the in vivo performance of treated nano-ZR was evaluated by implantation in the femur of male Sprague–Dawley rats. The results showed that the amount of bone formed after the plasma treatment of alkali-modified nano-ZR was higher than that of untreated nano-ZR. Thus, induction of superhydrophilicity in nano-ZR via atmospheric pressure plasma treatment affects bone marrow and vascular cell adhesion and promotes bone formation without altering other surface properties. |
format | Online Article Text |
id | pubmed-7589822 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75898222020-10-29 Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR) Takao, Seiji Komasa, Satoshi Agariguchi, Akinori Kusumoto, Tetsuji Pezzotti, Giuseppe Okazaki, Joji Int J Mol Sci Article Zirconia ceramics such as ceria-stabilized zirconia/alumina nanocomposites (nano-ZR) are applied as implant materials due to their excellent mechanical properties. However, surface treatment is required to obtain sufficient biocompatibility. In the present study, we explored the material surface functionalization and assessed the initial adhesion of rat bone marrow mesenchymal stem cells, their osteogenic differentiation, and production of hard tissue, on plasma-treated alkali-modified nano-ZR. Superhydrophilicity was observed on the plasma-treated surface of alkali-treated nano-ZR along with hydroxide formation and reduced surface carbon. A decreased contact angle was also observed as nano-ZR attained an appropriate wettability index. Treated samples showed higher in vitro bovine serum albumin (BSA) adsorption, initial adhesion of bone marrow and endothelial vascular cells, high alkaline phosphatase activity, and increased expression of bone differentiation-related factors. Furthermore, the in vivo performance of treated nano-ZR was evaluated by implantation in the femur of male Sprague–Dawley rats. The results showed that the amount of bone formed after the plasma treatment of alkali-modified nano-ZR was higher than that of untreated nano-ZR. Thus, induction of superhydrophilicity in nano-ZR via atmospheric pressure plasma treatment affects bone marrow and vascular cell adhesion and promotes bone formation without altering other surface properties. MDPI 2020-10-10 /pmc/articles/PMC7589822/ /pubmed/33050494 http://dx.doi.org/10.3390/ijms21207476 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Takao, Seiji Komasa, Satoshi Agariguchi, Akinori Kusumoto, Tetsuji Pezzotti, Giuseppe Okazaki, Joji Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR) |
title | Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR) |
title_full | Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR) |
title_fullStr | Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR) |
title_full_unstemmed | Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR) |
title_short | Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR) |
title_sort | effects of plasma treatment on the bioactivity of alkali-treated ceria-stabilised zirconia/alumina nanocomposite (nanozr) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589822/ https://www.ncbi.nlm.nih.gov/pubmed/33050494 http://dx.doi.org/10.3390/ijms21207476 |
work_keys_str_mv | AT takaoseiji effectsofplasmatreatmentonthebioactivityofalkalitreatedceriastabilisedzirconiaaluminananocompositenanozr AT komasasatoshi effectsofplasmatreatmentonthebioactivityofalkalitreatedceriastabilisedzirconiaaluminananocompositenanozr AT agariguchiakinori effectsofplasmatreatmentonthebioactivityofalkalitreatedceriastabilisedzirconiaaluminananocompositenanozr AT kusumototetsuji effectsofplasmatreatmentonthebioactivityofalkalitreatedceriastabilisedzirconiaaluminananocompositenanozr AT pezzottigiuseppe effectsofplasmatreatmentonthebioactivityofalkalitreatedceriastabilisedzirconiaaluminananocompositenanozr AT okazakijoji effectsofplasmatreatmentonthebioactivityofalkalitreatedceriastabilisedzirconiaaluminananocompositenanozr |