Cargando…

Development of a Flowmeter Using Vibration Interaction between Gauge Plate and External Flow Analyzed by LSTM

(1) Background: This study is aimed at the development of a precise and inexpensive device for flow information measurement for external flow. This novel flowmeter uses an LSTM (long short-term memory) neural network algorithm to analyze the vibration responses of the gauge plate. (2) Methods: A sig...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Jie, Chung, Youngbeen, Park, Junhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589824/
https://www.ncbi.nlm.nih.gov/pubmed/33092213
http://dx.doi.org/10.3390/s20205922
Descripción
Sumario:(1) Background: This study is aimed at the development of a precise and inexpensive device for flow information measurement for external flow. This novel flowmeter uses an LSTM (long short-term memory) neural network algorithm to analyze the vibration responses of the gauge plate. (2) Methods: A signal processing method using an LSTM neural network is proposed for the development of mass flow rate estimation by sensing the vibration responses of a gauge plate. An FFT (fast Fourier transform) and an STFT (short-time Fourier transform) were used to analyze the vibration characteristics of the gauge plate depending on the mass flow rate. For precise measurements, the vibration level and roughness were computed and used as input features. The actual mass flow rate measured by using a weight transducer was employed as the output features for the LSTM prediction model. (3) Results: The estimated flow rate matched the actual measured mass flow rate very closely. The deviations in measurements for the total mass flow were less than 6%. (4) Conclusions: The estimation of the mass flow rate for external flow through the proposed flowmeter by use of vibration responses analyzed by the LSTM neural network was proposed and verified.