Cargando…

Optimization of Ecological Water Supplement Scheme for Improved Suitable Habitat Area for Rare Migratory Birds in Nature Reserves Using Interval-Parameter Fuzzy Two-Stage Stochastic Programming Model

The optimization of ecological water supplement scheme in Momoge National Nature Reserve (MNNR), using an interval-parameter two-stage stochastic programming model (IPTSP), still experiences problems with fuzzy uncertainties and the wide scope of the obtained optimization schemes. These two limitati...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Xianrui, Meng, Chong, Ren, Zhixing, Zhao, Wenjin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589852/
https://www.ncbi.nlm.nih.gov/pubmed/33080931
http://dx.doi.org/10.3390/ijerph17207562
Descripción
Sumario:The optimization of ecological water supplement scheme in Momoge National Nature Reserve (MNNR), using an interval-parameter two-stage stochastic programming model (IPTSP), still experiences problems with fuzzy uncertainties and the wide scope of the obtained optimization schemes. These two limitations pose a high risk of system failure causing high decision risk for decision-makers and render it difficult to further undertake optimization schemes respectively. Therefore, an interval-parameter fuzzy two-stage stochastic programming (IPFTSP) model derived from an IPTSP model was constructed to address the random variable, the interval uncertainties and the fuzzy uncertainties in the water management system in the present study, to reduce decision risk and narrow down the scope of the optimization schemes. The constructed IPFTSP model was subsequently applied to the optimization of the ecological water supplement scheme of MNNR under different scenarios, to maximize the recovered habitat area and the carrying capacity for rare migratory water birds. As per the results of the IPFTSP model, the recovered habitat areas for rare migratory birds under low, medium and high flood flow scenarios were (14.06, 17.88) × 10(3), (14.92, 18.96) × 10(3) and (15.83, 19.43) × 10(3) ha, respectively, and the target value was (14.60, 18.47) × 10(3) ha with a fuzzy membership of (0.01, 0.83). Fuzzy membership reflects the possibility level that the model solutions satisfy the target value and the corresponding decision risk. We further observed that the habitat area recovered by the optimization schemes of the IPFTSP model was significantly increased compared to the recommended scheme, and the increases observed were (5.22%, 33.78%), (11.62%, 41.88%) and (18.44%, 45.39%). In addition, the interval widths of the recovered habitat areas in the IPFTSP model were reduced by 17.15%, 17.98% and 23.86%, in comparison to those from the IPTSP model. It was revealed that the IPFTSP model, besides generating the optimal decision schemes under different scenarios for decision-makers to select and providing decision space to adjust the decision schemes, also shortened the decision range, thereby reducing the decision risk and the difficulty of undertaking decision schemes. In addition, the fuzzy membership obtained from the IPFTSP model, reflecting the relationship among the possibility level, the target value, and the decision risk, assists the decision-makers in planning the ecological water supplement scheme with a preference for target value and decision risk.