Cargando…
Spatiotemporal Big Data for PM(2.5) Exposure and Health Risk Assessment during COVID-19
The coronavirus disease 2019 (COVID-19) first identified at the end of 2019, significantly impacts the regional environment and human health. This study assesses PM(2.5) exposure and health risk during COVID-19, and its driving factors have been analyzed using spatiotemporal big data, including Tenc...
Autores principales: | He, Hongbin, Shen, Yonglin, Jiang, Changmin, Li, Tianqi, Guo, Mingqiang, Yao, Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589865/ https://www.ncbi.nlm.nih.gov/pubmed/33096649 http://dx.doi.org/10.3390/ijerph17207664 |
Ejemplares similares
-
PM(2.5), Population Exposure and Economic Effects in Urban Agglomerations of China Using Ground-Based Monitoring Data
por: Shen, Yonglin, et al.
Publicado: (2017) -
Real-Time Estimation of Population Exposure to PM(2.5) Using Mobile- and Station-Based Big Data
por: Chen, Bin, et al.
Publicado: (2018) -
An Ensemble Spatiotemporal Model for Predicting PM(2.5) Concentrations
por: Li, Lianfa, et al.
Publicado: (2017) -
Spatiotemporal Evolution and Driving Forces of PM(2.5) in Urban Agglomerations in China
por: Yang, Huilin, et al.
Publicado: (2023) -
Spatiotemporal Variations of Indoor PM(2.5) Concentrations in Nanjing, China
por: Shao, Zhijuan, et al.
Publicado: (2019)