Cargando…
A Bioinformatic Pipeline Places STAT5A as a miR-650 Target in Poorly Differentiated Aggressive Breast Cancer
Breast cancer (BRCA) is a leading cause of mortality among women. Tumors often acquire aggressive features through genomic aberrations affecting cellular programs, e.g., the epithelial to mesenchymal transition (EMT). EMT facilitates metastasis leading to poor prognosis. We previously observed a cor...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589888/ https://www.ncbi.nlm.nih.gov/pubmed/33086498 http://dx.doi.org/10.3390/ijms21207720 |
_version_ | 1783600682730782720 |
---|---|
author | López-Huerta, Eric Fuentes-Pananá, Ezequiel M. |
author_facet | López-Huerta, Eric Fuentes-Pananá, Ezequiel M. |
author_sort | López-Huerta, Eric |
collection | PubMed |
description | Breast cancer (BRCA) is a leading cause of mortality among women. Tumors often acquire aggressive features through genomic aberrations affecting cellular programs, e.g., the epithelial to mesenchymal transition (EMT). EMT facilitates metastasis leading to poor prognosis. We previously observed a correlation between an amplification of miR-650 (Amp-650) and EMT features in BRCA samples isolated from Mexican patients. In this study, we explored the cBioportal database aiming to extend that observation and better understand the importance of Amp-650 for BRCA aggressiveness. We found that Amp-650 is more frequent in aggressive molecular subtypes of BRCA, as well as in high grade poorly differentiated tumors, which we confirmed in an external miRNA expression database. We performed differential expression analysis on samples harboring Amp-650, taking advantage of gene target prediction tools and tumor suppressor gene databases to mine several hundreds of differentially underexpressed genes. We observed STAT5A as a likely putative target gene for miR-650 in aggressive poorly differentiated BRCA. Samples with both Amp-650 and low expression of STAT5A had less overall survival than samples with either or none of the alterations. No target gene has been described for miR-650 in BRCA, thus, this bioinformatic study provides valuable information that should be corroborated experimentally. |
format | Online Article Text |
id | pubmed-7589888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75898882020-10-29 A Bioinformatic Pipeline Places STAT5A as a miR-650 Target in Poorly Differentiated Aggressive Breast Cancer López-Huerta, Eric Fuentes-Pananá, Ezequiel M. Int J Mol Sci Article Breast cancer (BRCA) is a leading cause of mortality among women. Tumors often acquire aggressive features through genomic aberrations affecting cellular programs, e.g., the epithelial to mesenchymal transition (EMT). EMT facilitates metastasis leading to poor prognosis. We previously observed a correlation between an amplification of miR-650 (Amp-650) and EMT features in BRCA samples isolated from Mexican patients. In this study, we explored the cBioportal database aiming to extend that observation and better understand the importance of Amp-650 for BRCA aggressiveness. We found that Amp-650 is more frequent in aggressive molecular subtypes of BRCA, as well as in high grade poorly differentiated tumors, which we confirmed in an external miRNA expression database. We performed differential expression analysis on samples harboring Amp-650, taking advantage of gene target prediction tools and tumor suppressor gene databases to mine several hundreds of differentially underexpressed genes. We observed STAT5A as a likely putative target gene for miR-650 in aggressive poorly differentiated BRCA. Samples with both Amp-650 and low expression of STAT5A had less overall survival than samples with either or none of the alterations. No target gene has been described for miR-650 in BRCA, thus, this bioinformatic study provides valuable information that should be corroborated experimentally. MDPI 2020-10-19 /pmc/articles/PMC7589888/ /pubmed/33086498 http://dx.doi.org/10.3390/ijms21207720 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article López-Huerta, Eric Fuentes-Pananá, Ezequiel M. A Bioinformatic Pipeline Places STAT5A as a miR-650 Target in Poorly Differentiated Aggressive Breast Cancer |
title | A Bioinformatic Pipeline Places STAT5A as a miR-650 Target in Poorly Differentiated Aggressive Breast Cancer |
title_full | A Bioinformatic Pipeline Places STAT5A as a miR-650 Target in Poorly Differentiated Aggressive Breast Cancer |
title_fullStr | A Bioinformatic Pipeline Places STAT5A as a miR-650 Target in Poorly Differentiated Aggressive Breast Cancer |
title_full_unstemmed | A Bioinformatic Pipeline Places STAT5A as a miR-650 Target in Poorly Differentiated Aggressive Breast Cancer |
title_short | A Bioinformatic Pipeline Places STAT5A as a miR-650 Target in Poorly Differentiated Aggressive Breast Cancer |
title_sort | bioinformatic pipeline places stat5a as a mir-650 target in poorly differentiated aggressive breast cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589888/ https://www.ncbi.nlm.nih.gov/pubmed/33086498 http://dx.doi.org/10.3390/ijms21207720 |
work_keys_str_mv | AT lopezhuertaeric abioinformaticpipelineplacesstat5aasamir650targetinpoorlydifferentiatedaggressivebreastcancer AT fuentespananaezequielm abioinformaticpipelineplacesstat5aasamir650targetinpoorlydifferentiatedaggressivebreastcancer AT lopezhuertaeric bioinformaticpipelineplacesstat5aasamir650targetinpoorlydifferentiatedaggressivebreastcancer AT fuentespananaezequielm bioinformaticpipelineplacesstat5aasamir650targetinpoorlydifferentiatedaggressivebreastcancer |