Cargando…

Cytosolic TaGAPC2 Enhances Tolerance to Drought Stress in Transgenic Arabidopsis Plants

Drought is a major natural disaster that seriously affects agricultural production, especially for winter wheat in boreal China. As functional proteins, the functions and mechanisms of glyceraldehyde-3-phosphate dehydrogenase in cytoplasm (GAPCs) have remained little investigated in wheat subjected...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lin, Zhang, Hanwen, Yang, Shushen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590034/
https://www.ncbi.nlm.nih.gov/pubmed/33053684
http://dx.doi.org/10.3390/ijms21207499
Descripción
Sumario:Drought is a major natural disaster that seriously affects agricultural production, especially for winter wheat in boreal China. As functional proteins, the functions and mechanisms of glyceraldehyde-3-phosphate dehydrogenase in cytoplasm (GAPCs) have remained little investigated in wheat subjected to adverse environmental conditions. In this study, we cloned and characterized a GAPC isoform TaGAPC2 in wheat. Over-expression of TaGApC2-6D in Arabidopsis led to enhanced root length, reduced reactive oxygen species (ROS) production, and elevated drought tolerance. In addition, the dual-luciferase assays showed that TaWRKY28/33/40/47 could positively regulate the expression of TaGApC2-6A and TaGApC2-6D. Further results of the yeast two-hybrid system and bimolecular fluorescence complementation assay (BiFC) demonstrate that TaPLDδ, an enzyme producing phosphatidic acid (PA), could interact with TaGAPC2-6D in plants. These results demonstrate that TaGAPC2 regulated by TaWRKY28/33/40/47 plays a crucial role in drought tolerance, which may influence the drought stress conditions via interaction with TaPLDδ. In conclusion, our results establish a new positive regulation mechanism of TaGAPC2 that helps wheat fine-tune its drought response.