Cargando…
Path Planning for Multi-Arm Manipulators Using Deep Reinforcement Learning: Soft Actor–Critic with Hindsight Experience Replay
Since path planning for multi-arm manipulators is a complicated high-dimensional problem, effective and fast path generation is not easy for the arbitrarily given start and goal locations of the end effector. Especially, when it comes to deep reinforcement learning-based path planning, high-dimensio...
Autores principales: | Prianto, Evan, Kim, MyeongSeop, Park, Jae-Han, Bae, Ji-Hun, Kim, Jung-Su |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590214/ https://www.ncbi.nlm.nih.gov/pubmed/33086774 http://dx.doi.org/10.3390/s20205911 |
Ejemplares similares
-
Hindsight Experience Replay Improves Reinforcement Learning for Control of a MIMO Musculoskeletal Model of the Human Arm
por: Crowder, Douglas C., et al.
Publicado: (2021) -
Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncertainty
por: Kim, MyeongSeop, et al.
Publicado: (2022) -
Offline replay supports planning in human reinforcement learning
por: Momennejad, Ida, et al.
Publicado: (2018) -
Prioritized experience replay in path planning via multi-dimensional transition priority fusion
por: Cheng, Nuo, et al.
Publicado: (2023) -
A Path-Planning Method Based on Improved Soft Actor-Critic Algorithm for Mobile Robots
por: Zhao, Tinglong, et al.
Publicado: (2023)