Cargando…

Mechanism of intrinsic resistance of lung squamous cell carcinoma to epithelial growth factor receptor-tyrosine kinase inhibitors revealed by high-throughput RNA interference screening

Although targeted therapy has achieved a great breakthrough in the treatment of lung adenocarcinoma, there are still no effective targeted drugs for lung squamous cell carcinoma (SqCC). In addition, as immunotherapy can only prolong the overall survival (OS) of lung SqCC by ≤5 months, chemotherapy a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ju, Lixia, Dong, Zhiyi, Yang, Juan, Li, Minghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590427/
https://www.ncbi.nlm.nih.gov/pubmed/33133263
http://dx.doi.org/10.3892/ol.2020.12218
_version_ 1783600799490768896
author Ju, Lixia
Dong, Zhiyi
Yang, Juan
Li, Minghua
author_facet Ju, Lixia
Dong, Zhiyi
Yang, Juan
Li, Minghua
author_sort Ju, Lixia
collection PubMed
description Although targeted therapy has achieved a great breakthrough in the treatment of lung adenocarcinoma, there are still no effective targeted drugs for lung squamous cell carcinoma (SqCC). In addition, as immunotherapy can only prolong the overall survival (OS) of lung SqCC by ≤5 months, chemotherapy and radiotherapy are still the main types of therapy for advanced SqCC. The expression level of epithelial growth factor receptor (EGFR) in patients with lung SqCC is higher compared with those with adenocarcinoma, but the former group is intrinsically resistant to EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Therefore, if the drug resistance in patients with lung SqCC could be reversed, the majority of patients may benefit from EGFR-TKIs. In the present study, the high-throughput RNA interference technology was used to screen the genes involved in the EGFR-TKI erlotinib resistance of lung SqCCs, and integrin-linked kinase (ILK) was identified to be the most effective. The role of ILK in erlotinib resistance was further studied in cell lines, and the expression of ILK was analyzed in patients with SqCC and adenocarcinoma. Finally, the mechanism of ILK in EGFR-TKIs resistance was analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) and ingenuity pathway analysis (IPA). The results demonstrated that the ILK gene knockdown could overcome erlotinib resistance by inhibiting cell proliferation, inducing apoptosis and blocking the cell cycle at the G2/M phase. The expression of ILK in patients with SqCC was significantly higher compared with those with adenocarcinoma with sensitizing EGFR mutations. In addition, the cell cycle pathway ‘G2/M DNA damage and checkpoint regulation’ was identified to be significantly inhibited by ILK knockdown in IPA, KEGG and GO analysis. The results of the present study may improve the understanding of EGFR-TKI resistance in lung SqCCs, thus promoting the development of potential targeted therapies for lung SqCCs.
format Online
Article
Text
id pubmed-7590427
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-75904272020-10-29 Mechanism of intrinsic resistance of lung squamous cell carcinoma to epithelial growth factor receptor-tyrosine kinase inhibitors revealed by high-throughput RNA interference screening Ju, Lixia Dong, Zhiyi Yang, Juan Li, Minghua Oncol Lett Articles Although targeted therapy has achieved a great breakthrough in the treatment of lung adenocarcinoma, there are still no effective targeted drugs for lung squamous cell carcinoma (SqCC). In addition, as immunotherapy can only prolong the overall survival (OS) of lung SqCC by ≤5 months, chemotherapy and radiotherapy are still the main types of therapy for advanced SqCC. The expression level of epithelial growth factor receptor (EGFR) in patients with lung SqCC is higher compared with those with adenocarcinoma, but the former group is intrinsically resistant to EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Therefore, if the drug resistance in patients with lung SqCC could be reversed, the majority of patients may benefit from EGFR-TKIs. In the present study, the high-throughput RNA interference technology was used to screen the genes involved in the EGFR-TKI erlotinib resistance of lung SqCCs, and integrin-linked kinase (ILK) was identified to be the most effective. The role of ILK in erlotinib resistance was further studied in cell lines, and the expression of ILK was analyzed in patients with SqCC and adenocarcinoma. Finally, the mechanism of ILK in EGFR-TKIs resistance was analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) and ingenuity pathway analysis (IPA). The results demonstrated that the ILK gene knockdown could overcome erlotinib resistance by inhibiting cell proliferation, inducing apoptosis and blocking the cell cycle at the G2/M phase. The expression of ILK in patients with SqCC was significantly higher compared with those with adenocarcinoma with sensitizing EGFR mutations. In addition, the cell cycle pathway ‘G2/M DNA damage and checkpoint regulation’ was identified to be significantly inhibited by ILK knockdown in IPA, KEGG and GO analysis. The results of the present study may improve the understanding of EGFR-TKI resistance in lung SqCCs, thus promoting the development of potential targeted therapies for lung SqCCs. D.A. Spandidos 2020-12 2020-10-15 /pmc/articles/PMC7590427/ /pubmed/33133263 http://dx.doi.org/10.3892/ol.2020.12218 Text en Copyright: © Ju et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Ju, Lixia
Dong, Zhiyi
Yang, Juan
Li, Minghua
Mechanism of intrinsic resistance of lung squamous cell carcinoma to epithelial growth factor receptor-tyrosine kinase inhibitors revealed by high-throughput RNA interference screening
title Mechanism of intrinsic resistance of lung squamous cell carcinoma to epithelial growth factor receptor-tyrosine kinase inhibitors revealed by high-throughput RNA interference screening
title_full Mechanism of intrinsic resistance of lung squamous cell carcinoma to epithelial growth factor receptor-tyrosine kinase inhibitors revealed by high-throughput RNA interference screening
title_fullStr Mechanism of intrinsic resistance of lung squamous cell carcinoma to epithelial growth factor receptor-tyrosine kinase inhibitors revealed by high-throughput RNA interference screening
title_full_unstemmed Mechanism of intrinsic resistance of lung squamous cell carcinoma to epithelial growth factor receptor-tyrosine kinase inhibitors revealed by high-throughput RNA interference screening
title_short Mechanism of intrinsic resistance of lung squamous cell carcinoma to epithelial growth factor receptor-tyrosine kinase inhibitors revealed by high-throughput RNA interference screening
title_sort mechanism of intrinsic resistance of lung squamous cell carcinoma to epithelial growth factor receptor-tyrosine kinase inhibitors revealed by high-throughput rna interference screening
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590427/
https://www.ncbi.nlm.nih.gov/pubmed/33133263
http://dx.doi.org/10.3892/ol.2020.12218
work_keys_str_mv AT julixia mechanismofintrinsicresistanceoflungsquamouscellcarcinomatoepithelialgrowthfactorreceptortyrosinekinaseinhibitorsrevealedbyhighthroughputrnainterferencescreening
AT dongzhiyi mechanismofintrinsicresistanceoflungsquamouscellcarcinomatoepithelialgrowthfactorreceptortyrosinekinaseinhibitorsrevealedbyhighthroughputrnainterferencescreening
AT yangjuan mechanismofintrinsicresistanceoflungsquamouscellcarcinomatoepithelialgrowthfactorreceptortyrosinekinaseinhibitorsrevealedbyhighthroughputrnainterferencescreening
AT liminghua mechanismofintrinsicresistanceoflungsquamouscellcarcinomatoepithelialgrowthfactorreceptortyrosinekinaseinhibitorsrevealedbyhighthroughputrnainterferencescreening