Cargando…
HiCHap: a package to correct and analyze the diploid Hi-C data
BACKGROUND: In diploid cells, it is important to construct maternal and paternal Hi-C contact maps respectively since the two homologous chromosomes can differ in chromatin three-dimensional (3D) organization. Though previous softwares could construct diploid (maternal and paternal) Hi-C contact map...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590616/ https://www.ncbi.nlm.nih.gov/pubmed/33109075 http://dx.doi.org/10.1186/s12864-020-07165-x |
Sumario: | BACKGROUND: In diploid cells, it is important to construct maternal and paternal Hi-C contact maps respectively since the two homologous chromosomes can differ in chromatin three-dimensional (3D) organization. Though previous softwares could construct diploid (maternal and paternal) Hi-C contact maps by using phased genetic variants, they all neglected the systematic biases in diploid Hi-C contact maps caused by variable genetic variant density in the genome. In addition, few of softwares provided quantitative analyses on allele-specific chromatin 3D organization, including compartment, topological domain and chromatin loop. RESULTS: In this work, we revealed the feature of allele-assignment bias caused by the variable genetic variant density, and then proposed a novel strategy to correct the systematic biases in diploid Hi-C contact maps. Based on the bias correction, we developed an integrated tool, called HiCHap, to perform read mapping, contact map construction, whole-genome identification of compartments, topological domains and chromatin loops, and allele-specific testing for diploid Hi-C data. Our results show that the correction on allele-assignment bias in HiCHap does significantly improve the quality of diploid Hi-C contact maps, which subsequently facilitates the whole-genome identification of diploid chromatin 3D organization, including compartments, topological domains and chromatin loops. Finally, HiCHap also supports the data analysis for haploid Hi-C maps without distinguishing two homologous chromosomes. CONCLUSIONS: We provided an integrated package HiCHap to perform the data processing, bias correction and structural analysis for diploid Hi-C data. The source code and tutorial of software HiCHap are freely available at https://pypi.org/project/HiCHap/. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-020-07165-x. |
---|