Cargando…
Validation of a machine learning algorithm for early severe sepsis prediction: a retrospective study predicting severe sepsis up to 48 h in advance using a diverse dataset from 461 US hospitals
BACKGROUND: Severe sepsis and septic shock are among the leading causes of death in the United States and sepsis remains one of the most expensive conditions to diagnose and treat. Accurate early diagnosis and treatment can reduce the risk of adverse patient outcomes, but the efficacy of traditional...
Autores principales: | Burdick, Hoyt, Pino, Eduardo, Gabel-Comeau, Denise, Gu, Carol, Roberts, Jonathan, Le, Sidney, Slote, Joseph, Saber, Nicholas, Pellegrini, Emily, Green-Saxena, Abigail, Hoffman, Jana, Das, Ritankar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590695/ https://www.ncbi.nlm.nih.gov/pubmed/33109167 http://dx.doi.org/10.1186/s12911-020-01284-x |
Ejemplares similares
-
Effect of a sepsis prediction algorithm on patient mortality, length of stay and readmission: a prospective multicentre clinical outcomes evaluation of real-world patient data from US hospitals
por: Burdick, Hoyt, et al.
Publicado: (2020) -
Pediatric Severe Sepsis Prediction Using Machine Learning
por: Le, Sidney, et al.
Publicado: (2019) -
A Racially Unbiased, Machine Learning Approach to Prediction of Mortality: Algorithm Development Study
por: Allen, Angier, et al.
Publicado: (2020) -
Machine-Learning-Based Laboratory Developed Test for the Diagnosis of Sepsis in High-Risk Patients
por: Calvert, Jacob, et al.
Publicado: (2019) -
Prediction of respiratory decompensation in Covid-19 patients using machine learning: The READY trial
por: Burdick, Hoyt, et al.
Publicado: (2020)