Cargando…
DECIMER: towards deep learning for chemical image recognition
The automatic recognition of chemical structure diagrams from the literature is an indispensable component of workflows to re-discover information about chemicals and to make it available in open-access databases. Here we report preliminary findings in our development of Deep lEarning for Chemical I...
Autores principales: | Rajan, Kohulan, Zielesny, Achim, Steinbeck, Christoph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590713/ https://www.ncbi.nlm.nih.gov/pubmed/33372621 http://dx.doi.org/10.1186/s13321-020-00469-w |
Ejemplares similares
-
DECIMER 1.0: deep learning for chemical image recognition using transformers
por: Rajan, Kohulan, et al.
Publicado: (2021) -
Molecule Set Comparator (MSC): a CDK-based open rich‐client tool for molecule set similarity evaluations
por: Rajan, Kohulan, et al.
Publicado: (2021) -
DECIMER—hand-drawn molecule images dataset
por: Brinkhaus, Henning Otto, et al.
Publicado: (2022) -
DECIMER.ai: an open platform for automated optical chemical structure identification, segmentation and recognition in scientific publications
por: Rajan, Kohulan, et al.
Publicado: (2023) -
Author Correction: DECIMER.ai: an open platform for automated optical chemical structure identification, segmentation and recognition in scientific publications
por: Rajan, Kohulan, et al.
Publicado: (2023)