Cargando…
Photochemical Generation of Benzoazetinone by UV Excitation of Matrix-Isolated Precursors: Isatin or Isatoic Anhydride
[Image: see text] Benzoazetinone was photochemically generated by UV irradiation of isatin isolated in low-temperature Ar matrixes. Upon UV (λ = 278 nm) excitation of isatin, monomers of the compound underwent decarbonylation and the remaining part of the molecule adopted the benzoazetinone structur...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7590977/ https://www.ncbi.nlm.nih.gov/pubmed/32320240 http://dx.doi.org/10.1021/acs.jpca.0c02562 |
Sumario: | [Image: see text] Benzoazetinone was photochemically generated by UV irradiation of isatin isolated in low-temperature Ar matrixes. Upon UV (λ = 278 nm) excitation of isatin, monomers of the compound underwent decarbonylation and the remaining part of the molecule adopted the benzoazetinone structure or the structure of its open-ring isomer α-iminoketene. The same products (benzoazetinone and α-iminoketene) were generated by UV (λ = 278 nm) induced decarboxylation of matrix-isolated monomers of isatoic anhydride. Photoproduced α-iminoketene appeared in the low-temperature matrixes as a mixture of syn and anti isomers. Photoproducts generated upon λ = 278 nm irradiation of matrix-isolated isatin were subsequently exposed to λ = 532 nm light. That irradiation resulted in the shift of the α-iminoketene–benzoazetinone population ratio in favor of the latter closed-ring structure. The next irradiation at 305 nm caused the shift of the α-iminoketene–benzoazetinone population ratio in the opposite direction, that is, in favor of the open-ring isomer. Neither benzoazetinone nor its α-iminoketene open-ring isomer was generated upon UV (λ = 278 nm) irradiation of phthalimide isolated in Ar matrixes. Instead, the UV-excited monomers of this compound underwent such phototransformations as oxo → hydroxy phototautomerism or degradation of the five-membered ring with release of HNCO and CO. The efficiency of these photoconversions was low. |
---|