Cargando…

VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli

Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex...

Descripción completa

Detalles Bibliográficos
Autores principales: Millman, Daniel J, Ocker, Gabriel Koch, Caldejon, Shiella, Kato, India, Larkin, Josh D, Lee, Eric Kenji, Luviano, Jennifer, Nayan, Chelsea, Nguyen, Thuyanh V, North, Kat, Seid, Sam, White, Cassandra, Lecoq, Jerome, Reid, Clay, Buice, Michael A, de Vries, Saskia EJ
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591255/
https://www.ncbi.nlm.nih.gov/pubmed/33108272
http://dx.doi.org/10.7554/eLife.55130
_version_ 1783600957820502016
author Millman, Daniel J
Ocker, Gabriel Koch
Caldejon, Shiella
Kato, India
Larkin, Josh D
Lee, Eric Kenji
Luviano, Jennifer
Nayan, Chelsea
Nguyen, Thuyanh V
North, Kat
Seid, Sam
White, Cassandra
Lecoq, Jerome
Reid, Clay
Buice, Michael A
de Vries, Saskia EJ
author_facet Millman, Daniel J
Ocker, Gabriel Koch
Caldejon, Shiella
Kato, India
Larkin, Josh D
Lee, Eric Kenji
Luviano, Jennifer
Nayan, Chelsea
Nguyen, Thuyanh V
North, Kat
Seid, Sam
White, Cassandra
Lecoq, Jerome
Reid, Clay
Buice, Michael A
de Vries, Saskia EJ
author_sort Millman, Daniel J
collection PubMed
description Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex (V1) of mouse is highly correlated with locomotion, the relevance of locomotion-related VIP neuron activity to visual coding is not known. Here we show that VIP neurons in mouse V1 respond strongly to low contrast front-to-back motion that is congruent with self-motion during locomotion but are suppressed by other directions and contrasts. VIP and SST neurons have complementary contrast tuning. Layer 2/3 contains a substantially larger population of low contrast preferring pyramidal neurons than deeper layers, and layer 2/3 (but not deeper layer) pyramidal neurons show bias for front-to-back motion specifically at low contrast. Network modeling indicates that VIP-SST mutual antagonism regulates the gain of the cortex to achieve sensitivity to specific weak stimuli without compromising network stability.
format Online
Article
Text
id pubmed-7591255
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-75912552020-10-28 VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli Millman, Daniel J Ocker, Gabriel Koch Caldejon, Shiella Kato, India Larkin, Josh D Lee, Eric Kenji Luviano, Jennifer Nayan, Chelsea Nguyen, Thuyanh V North, Kat Seid, Sam White, Cassandra Lecoq, Jerome Reid, Clay Buice, Michael A de Vries, Saskia EJ eLife Neuroscience Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex (V1) of mouse is highly correlated with locomotion, the relevance of locomotion-related VIP neuron activity to visual coding is not known. Here we show that VIP neurons in mouse V1 respond strongly to low contrast front-to-back motion that is congruent with self-motion during locomotion but are suppressed by other directions and contrasts. VIP and SST neurons have complementary contrast tuning. Layer 2/3 contains a substantially larger population of low contrast preferring pyramidal neurons than deeper layers, and layer 2/3 (but not deeper layer) pyramidal neurons show bias for front-to-back motion specifically at low contrast. Network modeling indicates that VIP-SST mutual antagonism regulates the gain of the cortex to achieve sensitivity to specific weak stimuli without compromising network stability. eLife Sciences Publications, Ltd 2020-10-27 /pmc/articles/PMC7591255/ /pubmed/33108272 http://dx.doi.org/10.7554/eLife.55130 Text en © 2020, Millman et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Millman, Daniel J
Ocker, Gabriel Koch
Caldejon, Shiella
Kato, India
Larkin, Josh D
Lee, Eric Kenji
Luviano, Jennifer
Nayan, Chelsea
Nguyen, Thuyanh V
North, Kat
Seid, Sam
White, Cassandra
Lecoq, Jerome
Reid, Clay
Buice, Michael A
de Vries, Saskia EJ
VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli
title VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli
title_full VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli
title_fullStr VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli
title_full_unstemmed VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli
title_short VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli
title_sort vip interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591255/
https://www.ncbi.nlm.nih.gov/pubmed/33108272
http://dx.doi.org/10.7554/eLife.55130
work_keys_str_mv AT millmandanielj vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT ockergabrielkoch vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT caldejonshiella vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT katoindia vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT larkinjoshd vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT leeerickenji vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT luvianojennifer vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT nayanchelsea vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT nguyenthuyanhv vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT northkat vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT seidsam vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT whitecassandra vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT lecoqjerome vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT reidclay vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT buicemichaela vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli
AT devriessaskiaej vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli