Cargando…
VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli
Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591255/ https://www.ncbi.nlm.nih.gov/pubmed/33108272 http://dx.doi.org/10.7554/eLife.55130 |
_version_ | 1783600957820502016 |
---|---|
author | Millman, Daniel J Ocker, Gabriel Koch Caldejon, Shiella Kato, India Larkin, Josh D Lee, Eric Kenji Luviano, Jennifer Nayan, Chelsea Nguyen, Thuyanh V North, Kat Seid, Sam White, Cassandra Lecoq, Jerome Reid, Clay Buice, Michael A de Vries, Saskia EJ |
author_facet | Millman, Daniel J Ocker, Gabriel Koch Caldejon, Shiella Kato, India Larkin, Josh D Lee, Eric Kenji Luviano, Jennifer Nayan, Chelsea Nguyen, Thuyanh V North, Kat Seid, Sam White, Cassandra Lecoq, Jerome Reid, Clay Buice, Michael A de Vries, Saskia EJ |
author_sort | Millman, Daniel J |
collection | PubMed |
description | Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex (V1) of mouse is highly correlated with locomotion, the relevance of locomotion-related VIP neuron activity to visual coding is not known. Here we show that VIP neurons in mouse V1 respond strongly to low contrast front-to-back motion that is congruent with self-motion during locomotion but are suppressed by other directions and contrasts. VIP and SST neurons have complementary contrast tuning. Layer 2/3 contains a substantially larger population of low contrast preferring pyramidal neurons than deeper layers, and layer 2/3 (but not deeper layer) pyramidal neurons show bias for front-to-back motion specifically at low contrast. Network modeling indicates that VIP-SST mutual antagonism regulates the gain of the cortex to achieve sensitivity to specific weak stimuli without compromising network stability. |
format | Online Article Text |
id | pubmed-7591255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-75912552020-10-28 VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli Millman, Daniel J Ocker, Gabriel Koch Caldejon, Shiella Kato, India Larkin, Josh D Lee, Eric Kenji Luviano, Jennifer Nayan, Chelsea Nguyen, Thuyanh V North, Kat Seid, Sam White, Cassandra Lecoq, Jerome Reid, Clay Buice, Michael A de Vries, Saskia EJ eLife Neuroscience Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex (V1) of mouse is highly correlated with locomotion, the relevance of locomotion-related VIP neuron activity to visual coding is not known. Here we show that VIP neurons in mouse V1 respond strongly to low contrast front-to-back motion that is congruent with self-motion during locomotion but are suppressed by other directions and contrasts. VIP and SST neurons have complementary contrast tuning. Layer 2/3 contains a substantially larger population of low contrast preferring pyramidal neurons than deeper layers, and layer 2/3 (but not deeper layer) pyramidal neurons show bias for front-to-back motion specifically at low contrast. Network modeling indicates that VIP-SST mutual antagonism regulates the gain of the cortex to achieve sensitivity to specific weak stimuli without compromising network stability. eLife Sciences Publications, Ltd 2020-10-27 /pmc/articles/PMC7591255/ /pubmed/33108272 http://dx.doi.org/10.7554/eLife.55130 Text en © 2020, Millman et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Millman, Daniel J Ocker, Gabriel Koch Caldejon, Shiella Kato, India Larkin, Josh D Lee, Eric Kenji Luviano, Jennifer Nayan, Chelsea Nguyen, Thuyanh V North, Kat Seid, Sam White, Cassandra Lecoq, Jerome Reid, Clay Buice, Michael A de Vries, Saskia EJ VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli |
title | VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli |
title_full | VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli |
title_fullStr | VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli |
title_full_unstemmed | VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli |
title_short | VIP interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli |
title_sort | vip interneurons in mouse primary visual cortex selectively enhance responses to weak but specific stimuli |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591255/ https://www.ncbi.nlm.nih.gov/pubmed/33108272 http://dx.doi.org/10.7554/eLife.55130 |
work_keys_str_mv | AT millmandanielj vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT ockergabrielkoch vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT caldejonshiella vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT katoindia vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT larkinjoshd vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT leeerickenji vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT luvianojennifer vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT nayanchelsea vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT nguyenthuyanhv vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT northkat vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT seidsam vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT whitecassandra vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT lecoqjerome vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT reidclay vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT buicemichaela vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli AT devriessaskiaej vipinterneuronsinmouseprimaryvisualcortexselectivelyenhanceresponsestoweakbutspecificstimuli |