Cargando…

Untreated sewage outfalls do not promote Trichodesmium blooms in the coasts of the Canary Islands

During the summer of 2017, recurrent extensive blooms of the diazotrophic cyanobacterium Trichodesmium invaded the beaches and coastal waters of the Canary Islands, causing great social alarm. Some local media and public sectors ascribed, without any strong scientific evidence, the origin and reacti...

Descripción completa

Detalles Bibliográficos
Autores principales: Benavides, Mar, Arístegui, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591472/
https://www.ncbi.nlm.nih.gov/pubmed/33110228
http://dx.doi.org/10.1038/s41598-020-75447-1
Descripción
Sumario:During the summer of 2017, recurrent extensive blooms of the diazotrophic cyanobacterium Trichodesmium invaded the beaches and coastal waters of the Canary Islands, causing great social alarm. Some local media and public sectors ascribed, without any strong scientific evidence, the origin and reactivation of these blooms to untreated sewage outfalls distributed along the coasts. In order to test whether sewage outfalls could have any influence on the metabolic activity of Trichodesmium, we performed (13)C and (15)N(2) uptake experiments with colonies experiencing three different bloom development stages, incubated both with clear seawater and sewage water from an outfall south of Gran Canaria island. Our results showed that sewage outfalls did not promote any increase in dinitrogen (N(2)) fixation in Trichodesmium, supporting the hypothesis that decaying blooms were generated offshore and transported shoreward by local currents and winds, accumulating mostly leeward of the islands. The combination of unusually warm seawater temperatures, enhanced and sustained stratification of the upper water column and recurrent dust deposition events would have favored the development of the Trichodesmium blooms, which lasted for at least four months.