Cargando…
Biomechanical effects of original equipment manufacturer and aftermarket abutment screws in zirconia abutment on dental implant assembly
The use of aftermarket computer-aided design/computer-assisted manufacturing (CAD/CAM) prosthesis components in dental implants has become popular. This study aimed to (1) compare the accuracy of aftermarket CAD/CAM screws with that of original equipment manufacturer (OEM) abutment screws and (2) ex...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591477/ https://www.ncbi.nlm.nih.gov/pubmed/33110137 http://dx.doi.org/10.1038/s41598-020-75469-9 |
Sumario: | The use of aftermarket computer-aided design/computer-assisted manufacturing (CAD/CAM) prosthesis components in dental implants has become popular. This study aimed to (1) compare the accuracy of aftermarket CAD/CAM screws with that of original equipment manufacturer (OEM) abutment screws and (2) examine the biomechanical effects of different abutment screws used with zirconia abutment in an implant fixture by using three-dimensional finite element analysis (FEA). Significantly different measurements were obtained for the aftermarket CAD/CAM and OEM screws. The FEA results indicated that under the same loading condition, the maximum stress of the aftermarket CAD/CAM screws was 15.9% higher than that of the OEM screws. Moreover, the maximum stress position occurred in a wide section of the OEM screws but in the narrowest section of the aftermarket screws. The stress of the OEM zirconia abutment was 14.9% higher when using the aftermarket screws than when using the OEM screws. The effect of the manufacturing differences between aftermarket and OEM screws on the clinical effect of aftermarket screws is unpredictable. Therefore, aftermarket screws should be cautiously used clinically. |
---|