Cargando…
Personalized prediction of delayed graft function for recipients of deceased donor kidney transplants with machine learning
Machine learning (ML) has shown its potential to improve patient care over the last decade. In organ transplantation, delayed graft function (DGF) remains a major concern in deceased donor kidney transplantation (DDKT). To this end, we harnessed ML to build personalized prognostic models to predict...
Autores principales: | Kawakita, Satoru, Beaumont, Jennifer L., Jucaud, Vadim, Everly, Matthew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591492/ https://www.ncbi.nlm.nih.gov/pubmed/33110142 http://dx.doi.org/10.1038/s41598-020-75473-z |
Ejemplares similares
-
Influence of steroid maintenance on the outcomes in deceased donor kidney transplant recipients experiencing delayed graft function
por: Tangirala, B., et al.
Publicado: (2013) -
Randomized Trial of Machine Perfusion Versus Cold Storage in Recipients of Deceased Donor Kidney Transplants With High Incidence of Delayed Graft Function
por: Tedesco-Silva, Helio, et al.
Publicado: (2017) -
Nonimmunologic Donor-Recipient Pairing, HLA Matching, and Graft Loss in Deceased Donor Kidney Transplantation
por: Vinson, Amanda Jean, et al.
Publicado: (2018) -
Duration of delayed graft function and its impact on graft outcomes in deceased donor kidney transplantation
por: Budhiraja, Pooja, et al.
Publicado: (2022) -
Association of Deceased Donor Acute Kidney Injury With Recipient Graft Survival
por: Liu, Caroline, et al.
Publicado: (2020)