Cargando…
Capturing human categorization of natural images by combining deep networks and cognitive models
Human categorization is one of the most important and successful targets of cognitive modeling, with decades of model development and assessment using simple, low-dimensional artificial stimuli. However, it remains unclear how these findings relate to categorization in more natural settings, involvi...
Autores principales: | Battleday, Ruairidh M., Peterson, Joshua C., Griffiths, Thomas L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591513/ https://www.ncbi.nlm.nih.gov/pubmed/33110085 http://dx.doi.org/10.1038/s41467-020-18946-z |
Ejemplares similares
-
From convolutional neural networks to models of higher‐level cognition (and back again)
por: Battleday, Ruairidh M., et al.
Publicado: (2021) -
Mapping the Mechanisms of Transcranial Alternating Current Stimulation: A Pathway from Network Effects to Cognition
por: Battleday, Ruairidh M., et al.
Publicado: (2014) -
Do Humans and Deep Convolutional Neural Networks Use Visual Information Similarly for the Categorization of Natural Scenes?
por: De Cesarei, Andrea, et al.
Publicado: (2021) -
Multivariate Models of Performance Validity: The Erdodi Index
Captures the Dual Nature of Non-Credible Responding (Continuous and
Categorical)
por: Erdodi, Laszlo A.
Publicado: (2022) -
Rapid categorization of natural face images in the infant right hemisphere
por: de Heering, Adélaïde, et al.
Publicado: (2015)