Cargando…

A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015

The ratio of plant transpiration to total terrestrial evapotranspiration (T/ET) captures the role of vegetation in surface-atmosphere interactions. However, several studies have documented a large variability in T/ET. In this paper, we present a new T/ET dataset (also including transpiration, evapot...

Descripción completa

Detalles Bibliográficos
Autores principales: Niu, Zhongen, He, Honglin, Zhu, Gaofeng, Ren, Xiaoli, Zhang, Li, Zhang, Kun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591528/
https://www.ncbi.nlm.nih.gov/pubmed/33110108
http://dx.doi.org/10.1038/s41597-020-00693-x
Descripción
Sumario:The ratio of plant transpiration to total terrestrial evapotranspiration (T/ET) captures the role of vegetation in surface-atmosphere interactions. However, several studies have documented a large variability in T/ET. In this paper, we present a new T/ET dataset (also including transpiration, evapotranspiration data) for China from 1981 to 2015 with spatial and temporal resolutions of 0.05° and 8 days, respectively. The T/ET dataset is based on a model-data fusion method that integrates the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model with multivariate observational datasets (transpiration and evapotranspiration). The dataset is driven by satellite-based leaf area index (LAI) data from GLASS and GLOBMAP, and climate data from the Chinese Ecosystem Research Network (CERN). Observational annual T/ET were used to validate the model, with R(2) and RMSE values were 0.73 and 0.07 (12.41%), respectively. The dataset provides significant insight into T/ET and its changes over the Chinese terrestrial ecosystem and will be beneficial for understanding the hydrological cycle and energy budgets between the land and the atmosphere.