Cargando…

Autologous extracellular Hsp70 exerts a dual role in rheumatoid arthritis

Extracellular heat shock proteins (Hsp) influence the adaptive immune response and may ameliorate pathogenesis of autoimmune diseases. While some preclinical observations suggest that highly conserved bacterial and/or murine Hsp70 peptides have potential utility in treatment of rheumatoid arthritis...

Descripción completa

Detalles Bibliográficos
Autores principales: Tukaj, Stefan, Mantej, Jagoda, Sobala, Michał, Potrykus, Katarzyna, Sitko, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591667/
https://www.ncbi.nlm.nih.gov/pubmed/32358783
http://dx.doi.org/10.1007/s12192-020-01114-z
Descripción
Sumario:Extracellular heat shock proteins (Hsp) influence the adaptive immune response and may ameliorate pathogenesis of autoimmune diseases. While some preclinical observations suggest that highly conserved bacterial and/or murine Hsp70 peptides have potential utility in treatment of rheumatoid arthritis (RA) via induction of T regulatory cells (Treg), the role of extracellular inducible human Hsp70 in adaptive immune processes requires further investigation. The present study evaluated Hsp70 influence on inflammatory cytokine-mediated modulation of T cell immunophenotype in ways that influence RA onset and severity. Initial experiments in the present investigation revealed that serum levels of Hsp70 are approximately 2-fold higher in RA patients versus healthy control subjects. To explore the effect of extracellular Hsp70 on key processes underlying the adaptive immune system, the effects of a highly pure, substrate-, and endotoxin-free human Hsp70 on polarization of the T helper cell subpopulations, including CD4(+)IL-17(+) (Th17), CD4(+)FoxP3(+) (Treg), CD4(+)IFN-γ(+) (Th1), and CD4(+)IL-4(+) (Th2), were studied in naïve human peripheral blood mononuclear cell (PBMC) cultures stimulated with anti-CD3/28 mAb. Major findings included an observation that while Hsp70 treatment increased Th17 frequencies and Th17/Treg ratio, the frequency of Th1 cells and the Th1/Th2 ratio were significantly decreased in the Hsp70-treated PBMC cultures. Moreover, data shown here provides preliminary suggestion that major contributing Hsp70-mediated immunomodulation includes interleukin 6 (IL-6) influence on Th17/Treg and Th1/Th2, since expression of this inflammatory cytokine is enhanced by in vitro Hsp70 treatment. These results are nevertheless preliminary and require further investigation to validate the above model.