Cargando…

Could SARS-CoV-2-induced lung injury be attenuated by vitamin D?

A novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) has been confirmed as having the capacity to transmit from humans to humans, causing acute respiratory distress syndrome (ARDS) and acute lung injury. Angiotensin converting enzyme-2 (ACE2) is known to be expressed on...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Dongqiong, Li, Xihong, Su, Xiaojuan, Mu, Dezhi, Qu, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591873/
https://www.ncbi.nlm.nih.gov/pubmed/33129966
http://dx.doi.org/10.1016/j.ijid.2020.10.059
Descripción
Sumario:A novel coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) has been confirmed as having the capacity to transmit from humans to humans, causing acute respiratory distress syndrome (ARDS) and acute lung injury. Angiotensin converting enzyme-2 (ACE2) is known to be expressed on type II pneumocytes. As a counter-regulatory arm of the renin–angiotensin system (RAS), ACE2 plays critical roles in the pathogenesis of ARDS and acute lung injury. The affinity of the spike protein receptor binding domain (RBD) of SARS-CoV-2 for human ACE2 (hACE2) largely determines the degree of clinical symptoms after infection by SARS-CoV-2. Previous studies have shown that regulating the ACE2/RAS system is effective in the treatment of severe acute respiratory syndrome coronavirus (SARS-CoV)-induced ARDS and acute lung injury. Since ACE2 is the host cell receptor for both SARS-CoV-2 and SARS-CoV, regulating the ACE2/RAS system may alleviate ARDS and acute lung injury caused by SARS-CoV-2 as well as SARS-CoV. Vitamin D was found to affect ACE2, the target of SARS-CoV-2; therefore, we propose that vitamin D might alleviate ARDS and acute lung injury induced by SARS-CoV-2 by modulating ACE2.